ICP问题的最小二乘法详细推导

ICP求解

问题定义

输入:在坐标系一中 n n n个坐标点 p ∈ { p 1 , p 2 , … , p n } \mathscr{p}\in\{p_1,p_2,\dots,p_n\} p{ p1,p2,,pn},坐标系二中 n n n个坐标点 q ∈ { q 1 , q 2 , ⋯   , q n } \mathscr{q}\in\{q_1,q_2,\cdots,q_n\} q{ q1,q2,,qn}

输出:坐标系一到坐标系二的转换关系 R ∈ S O ( 3 ) 、 t ∈ R 3 R\in SO(3)、t\in \mathbb{R}^3 RSO(3)tR3

推导过程

位移推导

根据问题我们可以知道如下关系成立:
p i = R q i + t p_i=Rq_i+t pi=Rqi+t
于是我们可以建立一个优化问题:
( R , t ) = arg ⁡ min ⁡ R ∈ S O ( 3 ) , t ∈ R 3 ∑ i = 1 n w i ∥ R q i + t − p i ∥ 2 (R,t)=\arg\min_{R\in SO(3),t\in\mathbb{R}^3}\sum_{i=1}^{n}w_i\Vert Rq_i+t-p_i \Vert^2 (R,t)=argRSO(3),tR3mini=1nwiRqi+tpi2
其中, w i w_i wi表示每一项残差的贡献。将上式看成只关于 t t t的函数:
F ( t ) = arg ⁡ min ⁡ ∑ i = 1 n w i ∥ R q i + t − p i ∥ 2 F(t) =\arg\min \sum_{i=1}^{n}w_i\Vert Rq_i+t-p_i \Vert^2 F(t)=argmini=1nwiRqi+tpi2
将上式对 t t t求偏导得到:
∂ F ( t ) ∂ t = arg ⁡ min ⁡ 2 ∑ i = 1 n w i ( R q i + t − p i ) = arg ⁡ min ⁡ ( 2 R ∑ i = 1 n ( w i q i ) + 2 t ∑ i = 1 n ( w i ) − 2 ∑ i = 1 n ( w i p i ) ) = arg ⁡ min ⁡ ( 2 R q ˉ + 2 t − p ˉ ) = 0 \begin{aligned} \frac{\partial F(t)}{\partial t} &=\arg \min 2\sum_{i=1}^{n}w_i( Rq_i+t-p_i)\\ &=\arg \min \left( 2R\sum_{i=1}^{n}(w_iq_i) +2t\sum_{i=1}^{n}(w_i)-2\sum_{i=1}^{n}(w_ip_i) \right)\\ &=\arg \min \left( 2R\bar{q}+2t-\bar{p} \right)\\ &=0 \end{aligned} tF(t)=argmin2i=1nwi(Rqi+tpi)=argmin(2Ri=1n(wiqi)+2ti=1n(w

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
一元线性回归的目标是找到一条直线来拟合数据,使得拟合线距离数据点的误差最小化。最小二乘法是一种常见的用来求解线性回归参数的方法。 假设我们有一组数据集合 {(x1, y1), (x2, y2), ..., (xn, yn)},其中 xi 是自变量,yi 是因变量。一元线性回归模型可以表示为 y = β0 + β1*x,其中 β0 和 β1 是待求的参数。 最小二乘法的目标是找到使得误差平方和最小化的参数值。我们定义误差 e = y - (β0 + β1*x),其中 e 是实际值与预测值之间的差异。我们将误差平方和定义为损失函数,即 L = ∑(e^2) = ∑((y - (β0 + β1*x))^2)。我们的目标是最小化损失函数 L。 为了求解最小二乘法的参数,我们需要对损失函数 L 进行优化。我们可以通过对 β0 和 β1 分别求导,令导数为 0,从而得到参数的闭式解。 首先对 β0 求导: ∂L/∂β0 = -2∑(y - (β0 + β1*x)) 令导数为 0,得到: ∑y - n*β0 - β1*∑x = 0 解出 β0,得到: β0 = (∑y - β1*∑x)/n 然后对 β1 求导: ∂L/∂β1 = -2∑x(y - (β0 + β1*x)) 令导数为 0,得到: ∑xy - β0*∑x - β1*∑(x^2) = 0 将 β0 的值代入上式,得到: ∑xy - (∑y - β1*∑x)/n * ∑x - β1*∑(x^2) = 0 整理后可得: ∑xy - (∑x*∑y)/n = β1*(∑(x^2) - (∑x)^2/n) 解出 β1,得到: β1 = (∑xy - (∑x*∑y)/n) / (∑(x^2) - (∑x)^2/n) 至此,我们得到了一元线性回归最小二乘法的参数推导
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值