关闭

keras实现deepid:flatten中间层、merge多个层次、二维图像的处理、权重的保存与重用、Autoencoder

标签: keras实现deepidflatten中间层merge多个层次权重的保存与重用Autoencoder
2345人阅读 评论(0) 收藏 举报
分类:


论文参考:Sun Y, Wang X, Tang X. Deep learning face representation from predicting 10,000 classes[C]//Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on. IEEE, 2014: 1891-1898.

参考这个:https://github.com/stdcoutzyx/DeepID_FaceClassify/blob/master/README_ch.md

由于上面链接使用的theano,所以修改成了keras代码试了一下。




主要学习使用了:

Convolution2D

MaxPooling2D

Flatten

Input

merge


功能主要包括:

构建网络结构(flatten中间层、merge多个层次、二维图像的处理)

网络训练(权重的保存与重用、earlyStop的使用)

获取中间层的输出


之前还研究了一下:

sequence、graph

Autoencoder

一并记录一下



源码就不贴了,太挫。





1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:452147次
    • 积分:8091
    • 等级:
    • 排名:第2505名
    • 原创:325篇
    • 转载:83篇
    • 译文:4篇
    • 评论:165条
    个人简介
    本科:南航“妓院”,软件工程专业,保送北大直博。
    博士:北大信科学院,方向是大数据与机器学习,至今未入门,希望高人指点。。。
    联系方式:hy.mao@pku.edu.cn。
    本科实习:北京去哪儿网(北京趣拿软件科技有限公司),做: Arpu值预测——大数据应用; 流程效率监控平台——BPM类开发。
    博客专栏