关闭

Python下opencv使用笔记(三)(图像的几何变换)

标签: python几何变换图像处理
14428人阅读 评论(1) 收藏 举报
分类:
  • 写在之前
    二维与三维图像的几何变换在计算机图形学上有重要的应用,包括现在的许多图像界面的切换、二维与三维游戏画面控制等等都涉及到图像几何变换,就比如说在三维游戏中,控制角色三维移动的时候,画面是要跟着移动的,那么怎么移动,怎么让上一时刻的画面移动到这一时刻,这都是根据了你的移动量,然后找到三维坐标之间的对应关系,用这一时刻的坐标替换到上一时刻的坐标像素值实现图像的切换。
  • 图像的几何变换主要包括:平移、扩大与缩小、旋转、仿射、透视等等。图像变换是建立在矩阵运算基础上的,通过矩阵运算可以很快的找到对应关系。理解变换的原理需要理解变换的构造方法以及矩阵的运算方法,曾经写过matlab下的简单图像变换原理,里面有最基础的构造原理可以看看:
    matlab之原始处理图像几何变换

(一)图像的平移

下面介绍的图像操作假设你已经知道了为什么需要用矩阵构造才能实现了(上面那个博客有介绍为什么)。那么关于偏移很简单,图像的平移,沿着x方向tx距离,y方向ty距离,那么需要构造移动矩阵:

M=[1001txty]

通过numpy来产生这个矩阵,并将其赋值给仿射函数cv2.warpAffine().
仿射函数cv2.warpAffine()接受三个参数,需要变换的原始图像,移动矩阵M 以及变换的图像大小(这个大小如果不和原始图像大小相同,那么函数会自 动通过插值来调整像素间的关系)。
一个例子如下:

import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread('flower.jpg')
H = np.float32([[1,0,100],[0,1,50]])
rows,cols = img.shape[:2]
res = cv2.warpAffine(img,H,(rows,cols)) #需要图像、变换矩阵、变换后的大小
plt.subplot(121)
plt.imshow(img)
plt.subplot(122)
plt.imshow(res)

这里写图片描述

(二)图像的扩大与缩小

图像的扩大与缩小有专门的一个函数,cv2.resize(),那么关于伸缩需要确定的就是缩放比例,可以是x与y方向相同倍数,也可以单独设置x与y的缩放比例。另外一个就是在缩放以后图像必然就会变化,这就又涉及到一个插值问题。那么这个函数中,缩放有几种不同的插值(interpolation)方法,在缩小时推荐cv2.INTER_ARER,扩大是推荐cv2.INTER_CUBIC和cv2.INTER_LINEAR。默认都是cv2.INTER_LINEAR,比如:

import cv2
import matplotlib.pyplot as plt

img = cv2.imread('flower.jpg')
# 插值:interpolation
# None本应该是放图像大小的位置的,后面设置了缩放比例,
#所有就不要了
res1 = cv2.resize(img,None,fx=2,fy=2,interpolation=cv2.INTER_CUBIC)
#直接规定缩放大小,这个时候就不需要缩放因子
height,width = img.shape[:2]
res2 = cv2.resize(img,(2*width,2*height),interpolation=cv2.INTER_CUBIC)
plt.subplot(131)
plt.imshow(img)
plt.subplot(132)
plt.imshow(res1)
plt.subplot(133)
plt.imshow(res2)

这里写图片描述
通过坐标轴可以看到图像扩大了一倍,并且两种方法相同。

(三)图像的旋转

图像的旋转矩阵一般为:

M=[cos(θ)sin(θ)sin(θ)cos(θ)]

但是单纯的这个矩阵是在原点处进行变换的,为了能够在任意位置进行旋转变换,opencv采用了另一种方式:
M=[αββα(1α)centerxβcenteryβcenterx+(1α)centery]

为了构造这个矩阵,opencv提供了一个函数:
cv2.getRotationMatrix2D(),这个函数需要三个参数,旋转中心,旋转角度,旋转后图像的缩放比例,比如下例:

import cv2
import matplotlib.pyplot as plt

img = cv2.imread('flower.jpg')
rows,cols = img.shape[:2]
#第一个参数旋转中心,第二个参数旋转角度,第三个参数:缩放比例
M = cv2.getRotationMatrix2D((cols/2,rows/2),45,1)
#第三个参数:变换后的图像大小
res = cv2.warpAffine(img,M,(rows,cols))

plt.subplot(121)
plt.imshow(img)
plt.subplot(122)
plt.imshow(res)

这里写图片描述

(四)图像的仿射

图像的旋转加上拉升就是图像仿射变换,仿射变化也是需要一个M矩阵就可以,但是由于仿射变换比较复杂,一般直接找很难找到这个矩阵,opencv提供了根据变换前后三个点的对应关系来自动求解M。这个函数是
M=cv2.getAffineTransform(pos1,pos2),其中两个位置就是变换前后的对应位置关系。输 出的就是仿射矩阵M。然后在使用函数cv2.warpAffine()。形象化的图如下(引用参考的)
这里写图片描述
一个例子比如:

import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread('flower.jpg')
rows,cols = img.shape[:2]
pts1 = np.float32([[50,50],[200,50],[50,200]])
pts2 = np.float32([[10,100],[200,50],[100,250]])
M = cv2.getAffineTransform(pts1,pts2)
#第三个参数:变换后的图像大小
res = cv2.warpAffine(img,M,(rows,cols))
plt.subplot(121)
plt.imshow(img)
plt.subplot(122)
plt.imshow(res)

这里写图片描述

(五)图像的透射

透视需要的是一个3*3的矩阵,同理opencv在构造这个矩阵的时候还是采用一种点对应的关系来通过函数自己寻找的,因为我们自己很难计算出来。这个函数是M = cv2.getPerspectiveTransform(pts1,pts2),其中pts需要变换前后的4个点对应位置。得到M后在通过函数cv2.warpPerspective(img,M,(200,200))进行。形象化的图如下(引用参考的)
这里写图片描述
一个例子如下:

import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread('flower.jpg')
rows,cols = img.shape[:2]
pts1 = np.float32([[56,65],[238,52],[28,237],[239,240]])
pts2 = np.float32([[0,0],[200,0],[0,200],[200,200]])
M = cv2.getPerspectiveTransform(pts1,pts2)
res = cv2.warpPerspective(img,M,(200,200))
plt.subplot(121)
plt.imshow(img)
plt.subplot(122)
plt.imshow(res)

这里写图片描述

2
0
查看评论

python opencv 图像尺寸变换

利用python opencv中的  cv.Resize(源,目标,变换方法)就可以实现变换为想要的尺寸了 源文件:就不用说了 目标:你可以对图像进行倍数的放大和缩小  也可以直接的输入尺寸大小 变换的方法: CV_INTER_NN - 最近邻插值, ...
  • u012192662
  • u012192662
  • 2013-12-13 15:26
  • 45300

opencv resize (C/C++/Python)

参考: http://www.opencv.org.cn/opencvdoc/2.3.2/html/modules/imgproc/doc/geometric_transformations.html?highlight=resize#cv.Resize ##############...
  • u012005313
  • u012005313
  • 2016-07-18 20:04
  • 15228

【opencv+python】图像处理之二、几何变换(仿射与投影)的应用

该系列文章为 OpenCV+Python Tutorials的学习笔记 代码托管在Github 转载请注明: http://blog.csdn.net/a352611/article/details/51416769 [三记的博客]写在文章开始之前: 关于几何变换,常见的资料都没有把数学原...
  • a352611
  • a352611
  • 2016-05-15 20:34
  • 8014

OpenCV中图像旋转(warpAffine)算法的实现过程

OpenCV中图像旋转(warpAffine)算法的实现过程
  • fengbingchun
  • fengbingchun
  • 2013-12-31 13:51
  • 30184

python opencv 进行简单几何变换

本节实现的是使用OpenCV里自带的函数,对图像进行简单的几何变换。 - 放大 - 缩小 - 平移 - 旋转
  • huanglu_thu13
  • huanglu_thu13
  • 2016-08-28 17:16
  • 7009

Python-OpenCV 处理图像(一):基本操作 cv2

0x00. 图片读、写和显示操作 安装好 OpenCV 之后,首先尝试加载一张最简单的图片并显示出来,代码示例: 第一种方式使用cv2.cv的LoadImage、ShowImage和SaveImage函数 import cv2.cv as cv # 读图片 image=cv.LoadImag...
  • jqw11
  • jqw11
  • 2017-06-28 09:15
  • 2370

Opencv3.0-python的那些事儿:(三)、Opencv的图像处理中的几何变换

# *-* coding: utf-8 *-* import cv2 import numpy as np from matplotlib import pyplot as plt ''' 第14章:几何变换 14。1扩展缩放 扩展缩放只是改变图像的尺寸大小。cv...
  • qingyuanluofeng
  • qingyuanluofeng
  • 2016-06-03 22:31
  • 3908

【OpenCv 学习ing】warpPerspective用法

Applies a perspective transformation to an image. C++: void warpPerspective(InputArray src, OutputArray dst, InputArray...
  • Just_Yu
  • Just_Yu
  • 2014-10-27 16:47
  • 5602

【OpenCV3】透视变换——cv::getPerspectiveTransform()与cv::warpPerspective()详解

透视变换(Perspective Transformation)是将成像投影到一个新的视平面(Viewing Plane),也称作投影映射(Projective Mapping)。
  • guduruyu
  • guduruyu
  • 2017-05-19 10:04
  • 3869

OpenCV Python教程(2、图像元素的访问、通道分离与合并)

OpenCV Python教程之图像元素的访问、通道分离与合并 转载请详细注明原作者及出处,谢谢! 访问像素 像素的访问和访问numpy中ndarray的方法完全一样,灰度图为: img[j,i] = 255其中j,i分别表示图像的行和列。对于BGR图像,为:img[j,i,0]= 255 im...
  • sunny2038
  • sunny2038
  • 2013-06-14 20:50
  • 47019
    个人资料
    • 访问:740975次
    • 积分:7662
    • 等级:
    • 排名:第3328名
    • 原创:94篇
    • 转载:4篇
    • 译文:27篇
    • 评论:749条
    个人简介
    武汉 华中科技大学; 关注:图像处理、计算机视觉、人工智能、机器学习等领域;
    微信公众号
    最新评论