Machine Learning - X. Advice for Applying Machine Learning机器学习算法的诊断和改进 (Week 6)

本文探讨了机器学习算法在实际应用中常见的问题及其解决方案,包括如何评估模型、解决过拟合与欠拟合问题、调整正则化参数以及如何通过学习曲线来诊断算法的表现。此外还介绍了如何合理划分训练集、验证集和测试集。

http://blog.csdn.net/pipisorry/article/details/44119187

机器学习Machine Learning - Andrew NG courses学习笔记

Advice for Applying Machine Learning机器学习应用上的建议
{解决应用机器学习算法遇到的trainning set和test set预测不高的问题}

机器学习算法表现不佳时怎么办

但是不是所有时候增加训练集数据都是有效的!所以选择怎么做之前要学会怎么先去评估evaluate学习算法和诊断diagnostics,这样反而会节省时间。

皮皮blog

 

 

假设Hypothesis的评估方法

如何判断模型是否过拟合

直接绘制图形可以判断是否过拟合,但是features多了就不行了。

评估假设hypothesis的数据划分

首先分割数据集为训练集和测试集。

1. if data were already randomly sorted,just take the first 70% and last 30%.
2. if data were not randomly ordered,better to randomly shuffle the examples in your training set.

训练和测试学习算法过程

另一个可选的test sets评估方法可以是错误分类misclassification error,这样解释更简单:

模型选择和Train_Validation_Test集

模型选择:选择features或者选择规格参数regularization parameter。

不同的模型:不同的参数,多项式的度degree

假设还有一个参数d,并使用训练集来确定。不同的d就可以产生很多不同的hypothesis。

使用test set error选择模型

选择test set error最小的那个模型(如d=5时)

但是在测试集上选择参数会导致一个问题:在测试集上选择模型(选择参数d)然后又在测试集上评估模型是不公平的,因为参数d就是在test set上得到的。也即不能在test set中同时选择degree参数和评估hypothesis。 because I had fit this parameter d to my test set is no longer fair to evaluate my hypothesis on this test set, because I fit my parameters(the degree d of polynomial) to this test set,And so my hypothesis is likely to do better on this test set than it would on new examples that hasn't seen before.

使用交叉验证集来选择模型

将数据划分成 train set, cross validation set (also called the validation set), test set.

 

选择cross validation error最小的假设hypothesis。

而使用test set来度量measure或估计estimate选择的模型一般化generalization的误差error。

总结来说就是,通过训练集训练参数得到多个模型,通过交叉验证集来选择最好的模型,使用测试集来评估模型!

皮皮blog

 

 

机器学习算法的改进:规格化参数λ 减小 偏差Bias方差Variance

如果学习出来的算法总是表现的不好,会是因为模型存在high bias或者high variance问题,换句话说就是存在underfitting或者overfitting问题。

而改进机器学习算法的一种方法就是添加正则项,通过规格化参数来减小偏差和方差。

鉴别overfit(high variance)和underfit(high bias)

模型复杂度(degree of polynomial d增加)太低时,训练误差大,导致欠拟合underfit,bias很大。模型复杂度增加时,训练误差一般当然都会下降(一定范围内交叉验证误差也会降低),但是随着模型复杂度的增加,模型可能过拟合overfit,这时交叉验证误差就会增大,导致variance很大。

Regularization and Bias_Variance 规格化和偏差_方差

规格化参数对偏差和方差的影响

 

如何自动选择规格化参数λ

[机器学习模型选择:调参参数选择 ]

皮皮blog

 

 

机器学习算法的诊断和改进

学习曲线Learning Curves

learning curves : 诊断diagnose学习算法是否存在high bias(underfit)或者high variance(overfit)或者都存在。

注意下面图中的error是针对回归问题的error,如果是分类问题,train的error可能也会随着数据量增加而变小!

high bias(underfit)的情形

high bias时增加数据(当然是从当前导致欠拟合的数据量大小出发看的)误差都不会减小,high bias通过Jcv 和Jtrain反映。训练误差training error最终会和交叉验证误差cross validation error趋近,因为至少在m很大时,参数太少而数据太多。

high variance(overfit)的情形

high varience的显著特征: large gap,此时增加数据量测试集和训练集误差gap会减小。

机器学习算法的改进

通过绘制learning curves就可以判别模型到底出了什么问题,是high bias(underfit)还是high variance(overfit),再进行相对的改进。

high bias(underfit)的改进:增加features,添加多项式features,减小参数λ,使用更复杂的模型。

high variance(overfit)的改进:获取更多数据,减少features,增大参数λ,使用更简单的模型。(如果使用的评价指标发现训练集指标明显好于测试集,也可能是训练集和测试集的数据分布差异大,亦需要检查一下)

过拟合应该怎么办?

就是high variance(overfit)的改进:获取更多数据,减少features,增大参数λ。

过拟合一般是因为数据少而模型复杂,这样就需要

1 增加数据

或者减小模型复杂度2-7

2 减少features数目(feature列采样)Note: disadvantage, throwing away some of the features, is also throwing away some of the information you have about the problem.

3 加入规格化项(其中L1就相当于减小features数目,而L2是减小参数来减小数据波动,shrinkage减小过拟合),当然已有规格化项时应该增大参数λ

4 引入先验分布,应该和增加规格化项等价

5 防止过拟合加入boosting项

6 对于神经网络,为了避免模型过度训练,可以Early stopping。若指标趋近平稳(或者看学习曲线),及时终止。效果等价于权值衰减(权值误差也是还没到达训练样本最小值点时停止)。或者使用dropout方法防止过拟合。当然神经网络中也可以使用正则化。

7 Gradient noise。引入一个符合高斯分布的noise项,使得在poor initialization时具有更好的鲁棒性。

[深度学习:正则化]

示例:神经网络中每层单元个数的选择及hidden layler个数的选择

Note: fixes high bias: e.g. keep increasing the number of features/number of hidden units in neural network until you have a low bias classifier.

practical advice for choose the architecture or the connectivity pattern of the neural networks.

the other decisions: the number of hidden layers:using a single hidden layer is a reasonable default, but if you want to choose the number of hidden layers, one other thing you can try is find yourself a training cross-validation,and test set split and try training neural networks with one hidden layer or two or three and see which of those neural networks performs best on the cross-validation sets.

皮皮blog

 

 

Review

 

{The poor performance on both the training and test sets suggests a high bias problem,should increase the complexity of the hypothesis, thereby improving the fit to both the train and test data.}

 

{The learning algorithm finds parameters to minimize training set error, so the performance should be better on the training set than the test set.}

 

{A model with high variance will still have high test error, so it will generalize poorly.}

from:http://blog.csdn.net/pipisorry/article/details/44245347

ref:Advice for applying Machine Learning

Andrew Ng-Advice for applying Machine Learning.pdf

 

<think>我们正在处理一个关于Rancher自定义节点引导失败的问题,具体错误是"bootstrap failed error applying plan",涉及rancher-system-agent.servicerke2-server.service的日志。 根据用户的问题,我们需要排查Rancher自定义节点引导失败的原因。通常,这类问题可能由多种因素引起,包括网络问题、配置错误、资源不足、证书问题等。 步骤建议: 1. 检查网络连接:确保节点能够访问所需的镜像仓库Rancher Server。 2. 检查系统要求:确保节点满足RancherKubernetes的最低要求(如内存、CPU、磁盘空间等)。 3. 检查服务日志:详细查看rancher-system-agent.servicerke2-server.service的日志,以获取具体错误信息。 4. 检查配置文件:确认Rancher的配置文件(如bootstrap.yaml)是否正确。 5. 证书问题:如果使用自签名证书,确保节点信任该证书。 由于用户提到了具体的服务日志,我们应该首先指导用户如何查看这些日志。 查看日志的方法: - 使用`journalctl`命令查看服务日志: ```bash journalctl -u rancher-system-agent.service -b --no-pager journalctl -u rke2-server.service -b --no-pager ``` 另外,用户可能还需要查看rancher-system-agent的bootstrap日志,通常位于`/var/lib/rancher/agent/logs/`目录下。 常见错误及解决方案: 1. 镜像拉取失败:检查镜像仓库的访问,可能需要配置镜像仓库的证书或添加镜像仓库的信任。 2. 证书错误:如果Rancher Server使用自签名证书,需要在节点上信任该证书。可以将证书放置在`/etc/rancher/agent/ssl/ca.pem`(具体路径可能根据安装方式有所不同)。 3. 资源不足:检查节点资源(内存、CPU)是否足够启动RKE2。 4. 端口冲突:确保节点上的端口(如6443, 9345等)没有被其他进程占用。 如果用户能够提供具体的日志片段,我们可以更精确地定位问题。 由于用户的问题描述中提到了“error applying plan”,这通常表示在应用Rancher的配置计划时出现了问题。这可能是由于配置错误或者环境不满足导致的。 因此,我们建议用户按照以下步骤操作: 1. 查看rancher-system-agent的日志,定位错误发生的时间点。 2. 检查bootstrap配置文件(通常由用户提供,通过Rancher UI生成)是否正确,特别是server的URLtoken。 3. 检查节点时间是否同步,时间不同步会导致证书验证失败。 4. 检查节点的主机名是否唯一,并且能够被解析(如果使用主机名)。 如果问题仍然存在,可能需要收集更详细的日志并进一步分析。 生成相关问题: 1. 如何配置节点以信任自签名的Rancher Server证书? 2. 如何调整rancher-system-agent的日志级别以获取更详细的日志? 3. 在资源受限的节点上运行RKE2有哪些注意事项? 4. 如何检查Kubernetes组件(如etcd, kube-apiserver)的日志以排查启动失败?</think>### Rancher 自定义节点引导失败排查指南 当出现 `bootstrap failed error applying plan` 错误时,通常涉及 Rancher 系统代理(rancher-system-agent) RKE2 服务(rke2-server)的协同问题。以下是结构化排查步骤: #### 1. **核心服务日志分析** - **检查 rancher-system-agent 日志**: ```bash journalctl -u rancher-system-agent.service -b --no-pager | grep -i error ``` 重点关注 `Failed to apply plan` 相关条目,通常由以下原因触发: - 证书问题(如无效/过期的 TLS 证书) - 网络连接失败(无法访问 Rancher Server API) - 配置冲突(如重复的节点名称或 IP) - **检查 rke2-server 日志**: ```bash journalctl -u rke2-server.service -b --no-pager ``` 关键排查点: - `etcd` 启动失败(端口 2379/2380 冲突或数据损坏) - `kube-apiserver` 证书错误(日志中出现 `x509: certificate` 错误) - 资源不足(如内存不足导致 OOM kill) #### 2. **证书与配置验证** - **证书完整性检查**: ```bash ls -l /etc/rancher/ssl/ # 确认证书文件存在 openssl x509 -in /etc/rancher/ssl/cert.pem -noout -dates # 检查有效期 ``` 若使用自签名证书,需确保: - 所有节点的时间同步(`timedatectl status`) - 节点的 CA 证书与 Rancher Server 一致 - **配置文件验证**: 检查 `/etc/rancher/rke2/config.yaml` 的关键参数: ```yaml server: https://<RANCHER_SERVER_URL> # URL 必须可访问 token: <BOOTSTRAP_TOKEN> # 需与 Rancher UI 生成的 token 匹配 ``` #### 3. **网络与端口排查** - **网络连通性测试**: ```bash curl -vk https://<RANCHER_SERVER_URL>/v3 # 检查 API 可达性 nc -zv <RANCHER_SERVER_IP> 443 # 验证端口 ``` - **关键端口冲突检测**: ```bash ss -tulpn | grep -E '6443|9345|2379|2380' # RKE2 默认端口 ``` #### 4. **常见修复方案** - **证书问题**: ```bash rm -rf /etc/rancher/ssl/* # 清除旧证书 systemctl restart rancher-system-agent # 触发证书重新下发 ``` - **清理残留数据**: ```bash rke2-uninstall.sh # 卸载 RKE2 rm -rf /etc/rancher/* /var/lib/rancher/* reboot # 重启后重试引导 ``` - **资源不足处理**: - 节点至少 4GB 内存(低于此值 etcd 可能失败) - 确保 `/var` 分区 > 20GB 磁盘空间 #### 5. **高级诊断** - **启用调试日志**: ```bash vim /etc/rancher/agent/config.yaml ``` 添加: ```yaml debug: true loglevel: debug ``` 重启服务后获取详细日志: ```bash systemctl restart rancher-system-agent ``` > **关键日志位置**: > - Rancher 系统代理日志:`/var/log/rancher/agent.log` > - RKE2 组件日志:`/var/lib/rancher/rke2/server/logs/`[^1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值