基于PCL的三维重建——点云配准(一)ICP算法实现

本文介绍了三维点云配准的重要性,特别是在逆向工程和计算机视觉领域的应用。点云配准的目标是通过坐标变换将不同视角下的点云数据融合成一个完整的模型。PCL库提供了自动配准功能,包括ICP算法。ICP通过迭代找到最佳的旋转矩阵R和平移向量T,以最小化点云间的距离。文章详细阐述了ICP的四个主要步骤,并给出了使用PCL进行点云配准及可视化的代码示例。
摘要由CSDN通过智能技术生成

      在逆向工程,计算机视觉,文物数字化等领域中,由于点云的不完整,旋转错位,平移错位等,使得要得到的完整的点云就需要对局部点云进行配准,为了得到被测物体的完整数据模型,需要确定一个合适的坐标系,将从各个视角得到的点集合并到统一的坐标系下形成一个完整的点云,然后就可以方便进行可视化的操作,这就是点云数据的配准。点云的配准有手动配准依赖仪器的配准,和自动配准,点云的自动配准技术是通过一定的算法或者统计学规律利用计算机计算两块点云之间错位,从而达到两块点云自动配准的效果,其实质就是把不同的坐标系中测得到的数据点云进行坐标系的变换,以得到整体的数据模型,问题的关键是如何让得到坐标变换的参数R(旋转矩阵)和T(平移向量),使得两视角下测得的三维数据经坐标变换后的距离最小,,目前配准算法按照过程可以分为整体配准和局部配准,。PCL中有单独的配准模块,实现了配准相关的基础数据结构,和经典的配准算法如ICP。

     ICP算法对待拼接的2片点云,首先根据一定的准则确立对应点集P与Q,其中对应点对的个数,然后通过最小乘法迭代计算最优的坐标变换,即旋转矩阵R和平移矢量t,使得误差函数最小,ICP处理流程分为四个主要的步骤:

     1. 对原始点云数据进行采样
     2.确定初始对应点集
     3.去除错误对应点对

     4.坐标变换求解

     以下代码读取两个pcd点云配准,用空格控制迭代次数,并用visualization可视化出来,其中白色用来显示原始点云数据,经过一定旋转平移的点云显示为绿色,红色用来显示icp匹配后的点云数据。每次迭代都会打出此时的选择矩阵和平移向量。


#include<iostream>
#include<pcl/io/pcd_io.h>
#include<pcl/point_types.h>
#include<pcl/registration/icp.h>
#include <pcl/visualization/pcl_visualizer.h>//可视化头文件

typedef pcl::PointXYZ PointT;
typedef pcl::PointCloud<PointT> PointCloudT;

bool next_iteration = false;

void print4x4Matrix(const Eigen::Matrix4d & matrix)    //打印旋转矩阵和平移矩阵
{
	printf("Rotation matrix :
ICP (Iterative Closest Point) 算法是一种常用的点云配准技术,尤其适用于三维空间中的物体对齐。在Python中,有很多库支持ICP算法,其中比较流行的是`pcl-python`(Point Cloud Library for Python)和`open3d`。 `pcl-python`库提供了完整的点云处理工具集,其中包括了ICP算法实现。你可以用它来执行点云配准,如以下代码示例所示: ```python from pcl import pcl_io, cloud_compression, pcl_common import numpy as np # 加载两个点云 pc1 = pcl.io.read_point_cloud_ascii("pointcloud1.txt") pc2 = pcl.io.read_point_cloud_ascii("pointcloud2.txt") # 创建ICP对象并设置初始参数 icp = cloud_compression.icp_registration() icp.set_transformation_model(pcl.icp.TRANSLATION) # 运行ICP算法 Transformation, distance_threshold = icp.register(pc1, pc2) # 应用变换到第二个点云 transformed_pc2 = icp.transform(pc2, Transformation) ``` `open3d`也是一个强大的3D可视化和操作库,也包含ICP功能。例如,你可以这样调用它的` registration_icp `函数: ```python import open3d as o3d pc1 = o3d.io.read_point_cloud("pointcloud1.pcd") pc2 = o3d.io.read_point_cloud("pointcloud2.pcd") # 初始化配准器 reg = o3d.registration.registration_icp( source=pc1, target=pc2, init_transform=o3d.Transform(), max_correspondence_distance=0.1, # 设置匹配距离阈值 criteria=o3d.registration.ICPConvergenceCriteria(max_iteration=100) # 设置迭代次数 ) aligned_pc2 = reg.transformed_source # 获取配准后的目标点云 ```
评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值