最近要做图像特征提取,可能要用下HOG特征,所以研究了下OpenCV的HOG描述子。OpenCV中的HOG特征提取功能使用了HOGDescriptor这个类来进行封装,其中也有现成的行人检测的接口。然而,无论是OpenCV官方说明文档还是各个中英文网站目前都没有这个类的使用说明,所以在这里把研究的部分心得分享一下。
首先我们进入HOGDescriptor所在的头文件,看看它的构造函数需要哪些参数。
CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8),
cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true),
nlevels(HOGDescriptor::DEFAULT_NLEVELS)
{}
CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride,
Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1,
int _histogramNormType=HOGDescriptor::L2Hys,
double _L2HysThreshold=0.2, bool _gammaCorrection=false,
int _nlevels=HOG

本文探讨了OpenCV中的HOGDescriptor类在图像特征提取中的应用,特别是行人检测。介绍了HOGDescriptor的构造函数参数,如winSize、blockSize、blockStride、cellSize和nbins,并通过示意图解释了这些参数的含义。nBins表示每个胞元内统计的梯度方向数,影响描述子维度的计算。参考了Histograms of Oriented Gradients for Human Detection, CVPR 2005的研究。"
109061027,9175515,系统重装后的Node.js环境变量配置,"['nodejs', '环境变量', 'debug', 'VSCode', '编码']
最低0.47元/天 解锁文章
3641

被折叠的 条评论
为什么被折叠?



