帕塞瓦尔定理(能量守恒定理)

转载 2014年10月29日 15:12:28

P帕塞瓦尔定理指出,一个信号所含有的能量(功率)恒等于此信号在完备正交函数集中各分量能量(功率)之和。它表明信号在时域的总能量等于信号在频域的总能量,即信号经傅里叶变换后其总能量保持不变,符合能量守恒定律。







Plancherel's theorem编辑

假定A(x)和B(x)都是平方可积的(参照勒贝格测度)复变函数,且定义在R上周期为2π的区间上,分别写成傅里叶级数的形式:
则有:

物理学和工程学上使用的记号

在 物理学 和 工程学 中, 帕塞瓦尔定理通常描述如下:

\int_{-\infty}^\infty | x(t) |^2 \, dt   =   \int_{-\infty}^\infty | X(f) |^2 \, df

其中X(f) = \mathcal{F} \{ x(t) \} 为 x(t) 的连续傅立叶变换(以归一化酉形式),而f代表x的频率分量(非角频率

帕塞瓦尔定理的此表达形式解释了波形x(t)依时间域t累积的总能量与该波形的傅立叶变换X(f)在频域域f累积的总能量相等。

对于离散时间信号,该理论表达式变换为:

 \sum_{n=-\infty}^\infty | x[n] |^2 = \frac{1}{2\pi} \int_{-\pi}^\pi | X(e^{i\phi}) |^2 d\phi

其中,Xx离散时间傅立叶变换(DTFT),而Φ为x角频率每样本)。

此外,对于离散傅立叶变换 (DFT),表达式变换为:

 \sum_{n=0}^{N-1} | x[n] |^2  =   \frac{1}{N} \sum_{k=0}^{N-1} | X[k] |^2

其中,X[k]为x[n]的DFT变换,变换前后样本长度皆为N



相关文章推荐

帕塞瓦尔定理的应用

频域和像素域的能量守恒定理,非常有用,来源于维基百科。     在数学中,帕塞瓦尔定理经常指“傅里叶转换是幺正算符”这一结论;简而言之,就是说函数平方的和(或积分)等于其傅里叶转换式平方之和...

帕斯瓦尔定理(Parseval's theorem)

∫∞−∞|x(t)|2dt=12π∫∞−∞|X(ω)|2dω=∫∞−∞|X(2πf)|2df∑n=−∞∞|x[n]|2=12π∫π−π|X(eiϕ)|2dϕ∑n=0N−1|x[n]|2=1N∑k=0N...

帕塞瓦尔定理(能量守恒定理)证明

时频域能量相等(parseval定理)

帖子-时域和频域能量相等 Parseval 定理   有限上序列x{k}的离散fourier变换是正交变换,满足Parseval能量守恒定理,反映了序列在时域的能量等于其变换域的能量。   关于...

Matlab 高斯 Chi方 右尾函数 Q函数

function [P]=Qchipr2(nu,lambda,x,epsilon) % % This program computes the right-tail probability % of ...
  • wwwwws
  • wwwwws
  • 2015年06月29日 13:54
  • 2223

塞瓦定理,逆定理,及其引伸的证明

转自:http://blog.sina.com.cn/s/blog_72151c710100ph3u.html 设P为△ABC三边所在直线外一点,AP,BP,CP分别交对边或其延长线于D,E,F,则...

hdu 1155 Bungee Jumping(物理题——能量守恒)

Bungee Jumping Problem Description Once again, James Bond is fleeing from some evil people who ...

Flash/Flex学习笔记(43):动量守恒与能量守恒

动能公式:   动量公式:   动量守恒:   能量守恒:    根据这些规律可以得到下列方程组:     解该方程组...

HDU1071-能量守恒

Bungee Jumping Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

BRDF能量守恒属性的证明

今天跟一哥们儿聊到BRDF,说起了其中能量守恒属性的证明,细想,这个之前倒还真没好考虑过的。于是搜了些资料,终还找到了方法,这里总结下。 对于BRDF中的能量守恒属性的基本表述形式为(注意其中的o、...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:帕塞瓦尔定理(能量守恒定理)
举报原因:
原因补充:

(最多只允许输入30个字)