Scale-Aware Face Detection

2017CVPR 文章链接: 《Scale-Aware Face Detection》对于人脸检测,通常我们需要采用各种手段小心的处理多尺度的问题。事实上,对于很多待检测图像,其只在某个尺度上才有人脸存在。如果我们可以“提前预知”哪些尺度上存在人脸,就可以针对性的进行检测从而减少计算量。1. 方法介绍整个检测分为两个阶段: stage1,输入缩小的图片进入Scale Proposal Network...
阅读(85) 评论(0)

不规则卷积神经网络

来自中科院自动化所的“不规则卷积神经网络”。文章链接: 《Irregular Convolutional Neural Networks》从直观上来看,一个不规则的卷积核(其shape可以自动学习)似乎更适应输入的pattern。 但考虑更多方面,比如学习效率、操作复杂度这些因素。个人认为,不规则卷积目前不是一个很值得称赞的工作。1. 方法介绍上图中,图(a)表示一个不规则卷积; 图(b)表示,尽...
阅读(75) 评论(0)

S3FD: Single Shot Scale-invariant Face Detector

一篇同样着重处理人脸尺度问题的检测文章。 方法可以看作是对SSD的改进与完善,速度较慢(36FPS with Titan X & VGA)。文章链接: 《S3FD: Single Shot Scale-invariant Face Detector》code will be aviable at https://github.com/sfzhang15/SFD1. 方法介绍如上图,整体方法结构和SS...
阅读(118) 评论(0)

FaceBoxes —— CPU上实时的人脸检测

一篇速度还可以的多尺度人脸检测文章。 方法和SSD大同小异。文章链接: 《FaceBoxes: A CPU Real-time Face Detector with High Accuracy》1. 方法介绍如上图,输入单张图片,在三个网络分支检测人脸。2. 要点介绍(1)Rapidly Digested Convolutional Layers(RDCL)在网络前期,使用RDCL快速的缩小feat...
阅读(235) 评论(0)

ScaleFace —— 尺度友好人脸检测

一篇关于如何处理多尺度人脸检测的文章。 从核心方法上来说和SSD没有本质的区别,只不过在实现细节上做了一些更为细致的工作。文章链接: 《Face Detection through Scale-Friendly Deep Convolutional Networks》1. 方法介绍如上图,采用ResNet网络,输入单张图片。 在网络不同阶段引出分支,然后后接RPN和Fast R-CNN。 共有3个分...
阅读(105) 评论(0)

ShiftCNN —— 基于量化的低精度网络表达

一个利用低精度和量化技术实现的神经网络压缩与解决方案。 个人认为,这是低精度量化方面少有的具有高度工程可行性的一个方案(虽然文中没有给出详细的模型大小速度方面的指标)。文章链接: 《ShiftCNN: Generalized Low-Precision Architecture for Inference of Convolutional Neural Networks》模型转换示例代码: http...
阅读(102) 评论(0)

DAN —— 人脸关键点

人脸关键点检测的论文。速度略差,但想法不错。 视频中人脸关键点检测往往存在抖动,而常见的深度学习方法又不适合做连续跟踪。 本文提供了一个实现跟踪的思路。文章链接: CVPR Workshop2017《Deep Alignment Network: A convolutional neural network for robust face alignment》源码(Theano实现): https:...
阅读(141) 评论(0)

Face R-CNN

又是一个用Faster R-CNN框架做人脸检测的,公开测试集指标又高了。T_T文章链接 《Face R-CNN》http://cn.arxiv.org/abs/1706.01061大体的框架保持不变:主要改进点:(1) Center loss对于最后的二分类,在softmax的基础上增加了center loss。为了使得center loss均衡,一个mini batch中正负样本比例限制为1:1...
阅读(99) 评论(0)

CReLU激活函数

一种改进ReLU激活函数的文章,来自ICML2016.文章链接: 《Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units》caffe实现: https://github.com/farmingyard/ShuffleNet1. 背景介绍整个文章的出发点来自于下...
阅读(188) 评论(0)

友元函数与友元类

面向对象编程的一个重要思想就是实现数据隐藏(类的封装特性),即:非成员函数不能访问private 或者 protected 变量。有些时候我们需要不经成员函数而访问private 或者 protected数据,那就需要用到 友元函数 或者友元类。1. 友元函数使用 friend 关键字在类内任意位置声明函数为友元函数。 而且,当要访问 非static成员时,需要对象作为参数。如下:#include...
阅读(61) 评论(0)

有符号整数的表示范围

结论: n比特有符号整数的表示范围为 \(-2^{n-1} ~ 2^{n-1}-1\)...
阅读(80) 评论(0)

GPU编程自学10 —— 流并行

深度学习的兴起,使得多线程以及GPU编程逐渐成为算法工程师无法规避的问题。这里主要记录自己的GPU自学历程。目录 《GPU编程自学1 —— 引言》 《GPU编程自学2 —— CUDA环境配置》 《GPU编程自学3 —— CUDA程序初探》 《GPU编程自学4 —— CUDA核函数运行参数》 《GPU编程自学5 —— 线程协作》 《GPU编程自学6 —— 函数与变量类型限定符》 《GPU编程自学7 —...
阅读(112) 评论(0)

MEC —— 优化内存与速度的卷积计算

本次介绍一种内存利用率高且速度较快的卷积计算方法。 来自ICML2017, 《MEC: Memory-efficient Convolution for Deep Neural Network》1. 背景工作目前的CNN模型中,全连接层往往在最后一层才会使用。 意思也就是说,网络的主体是由卷积层构成的。 因此,加快卷积层的计算对于整个网络的性能至关重要。目前,卷积的计算大多采用间接计算的方式,主要有...
阅读(306) 评论(2)

GPU编程自学9 —— 原子操作

深度学习的兴起,使得多线程以及GPU编程逐渐成为算法工程师无法规避的问题。这里主要记录自己的GPU自学历程。目录 《GPU编程自学1 —— 引言》 《GPU编程自学2 —— CUDA环境配置》 《GPU编程自学3 —— CUDA程序初探》 《GPU编程自学4 —— CUDA核函数运行参数》 《GPU编程自学5 —— 线程协作》 《GPU编程自学6 —— 函数与变量类型限定符》 《GPU编程自学7 —...
阅读(127) 评论(0)

C++ 类型转换

隐式类型转换 1 数值类型转换 2 指针类型转换 显式类型转换 1 explicit关键字 1 强制类型转换 11 static_cast 12 dynamic_cast 13 const_cast 14 reinterpret_cast 参考资料 C++类型转换大体上包括隐式类型转换和显式类型转换。1. 隐式类型转换隐式类型转换是自动执行的,无需显式的操作符。 隐式类型转换发生在很多地方,比如函数...
阅读(113) 评论(0)
120条 共8页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:354252次
    • 积分:4553
    • 等级:
    • 排名:第6725名
    • 原创:107篇
    • 转载:10篇
    • 译文:1篇
    • 评论:406条
    最新评论