梯度下降优化算法总结

本次介绍梯度下降优化算法。主要参考资料为一篇综述《An overview of gradient descent optimization algorithms》...
阅读(42) 评论(0)

C++ 内联函数inline

1. 内联函数的作用inline 2. 内联函数的实现 3.内联函数的优缺点 4.内联函数的应用场景 5 内联函数与宏的区别...
阅读(86) 评论(0)

Win10 linux子系统下显示图形界面

新版win10可以开启linux子系统,但是在里面执行Python的画图程序时因为缺少图形化界面总是报错,这里提供一个解决方案。(1) 下载windows版本Xming地址: https://sourceforge.net/projects/xming/?source=typ_redirect(2) 通过在命令窗中执行bash命令进入linux子系统;(3) 执行sudo apt-get insta...
阅读(445) 评论(0)

matlab保存figure中的图片去掉白边

输出图片成可直接调入的灰度图,设置输出图片空白边距,以及调整图片大小,纵横比。一、先显示图片,imshow。如果是plot,或者newplot,直接看“三”。 imshow(strain_image,’border’,’tight’,’initialmagnification’,’fit’); %’border’,’tight’的组合功能意思是去掉图像周边空白 %’InitialMagnifi...
阅读(237) 评论(0)

static关键字

static关键字的介绍主要从以下几个方面进行:1. 静态局部变量 2.静态全变量 3.静态函数 4.静态类成员变量 5.静态类成员函数...
阅读(378) 评论(2)

C/C++的四大内存分区

本文转载自Dablelv的博客专栏http://blog.csdn.net/k346k346/article/details/45592329正确的理解C/C++程序的内存分区,是合格程序猿的基本要求。 网络上流形两大版本内存分区,分别为:1. 五大内存分区:堆、栈、全局/静态存储区、自由存储区和常量存储区。 2. 五大内存分区:堆、栈、全局/静态存储区、字符串常量区和代码区。且不论以上两种...
阅读(230) 评论(0)

STL-Vector内存机制

vector可以看作是一个动态数组,其内存是连续的,并具有以下特性:(1) vector中的size表示当前实际数据数量,capacity 则表示当前可容纳的数量,即已开辟的内存。(2) 释放(pop_back)、删除(erase) 和 清空(clear) 只会改变size,不会改变capacity 。只有在vector析构的时候才会清空所有内存。(3) 当追加(push_back)、 插入(ins...
阅读(169) 评论(0)

利用ReLU输出稀疏性加速卷积

一篇讲利用ReLU输出的稀疏性来加速卷积计算的论文,其目的和另一篇文章《More is less》 有点类似。实验效果似乎还不错,但似乎并没有很大的创新。《Speeding up Convolutional Neural Networks By Exploiting the Sparsity of Rectifier Units》...
阅读(1888) 评论(0)

一行代码改进NMS

一篇讲通过改进NMS来提高检测效果的论文。文章链接: 《Improving Object Detection With One Line of Code》Github链接: https://github.com/bharatsingh430/soft-nmsMotivation 绝大部分目标检测方法,最后都要用到 NMS-非极大值抑制进行后处理。 通常的做法是将检测框按得分排序,然后保留得分最高的框...
阅读(2135) 评论(3)

MobileNets

一篇讲如何设计轻量级网络的文章,来自Google,方法和创新不是很多,但实验太充分。不愧是谷歌,财大气粗,实验随便跑。文章链接: 《MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications》文章共从三点来探讨网络加速,下面依次介绍这三点以及部分关键性的实验。Depthwise Separabl...
阅读(1339) 评论(3)

什么是P问题、NP问题和NPC问题

本文转自“什么是P问题、NP问题和NPC问题”: http://www.matrix67.com/blog/archives/105, 并做了排版整理。这或许是众多OIer最大的误区之一。你会经常看到网上出现“这怎么做,这不是NP问题吗”、“这个只有搜了,这已经被证明是NP问题了”之类的话。你要知道,大多数人此时所说的NP问题其实都是指的NPC问题。他们没有搞清楚NP问题和NPC问题的概念。NP问题...
阅读(370) 评论(0)

Beyond triplet loss—— Re-ID

一篇讲Person Re-ID的论文,来自CVPR2017,同样是改进了Triplet Loss。《Beyond triplet loss: a deep quadruplet network for person re-identification》 减小类内方差 和 增加类间方差...
阅读(851) 评论(0)

More is Less——卷积网络加速

一篇讲网络加速的论文,来自2017CVPR。《More is Less: A More Complicated Network with Less Inference Complexitv》Introduction 目前做神经网络加速的主要有这几个方面: 低秩分解,定点运算、矢量量化、稀疏表示、特殊的轻量级网络结构。...
阅读(2121) 评论(0)

Re-ID with Triplet Loss

一篇讲Person Re-ID的论文,与人脸识别(认证)有很多相通的地方。 《In Defense of the Triplet Loss for Person Re-Identification》...
阅读(1877) 评论(0)

CNN不能识别Negative图像

一篇挺有意思的短文 《Deep Neural Networks Do Not Recognize Negative Images》。CNN可能还无法像人类一样理解到语义层面,而语义理解很可能是以后人工智能的一个重要层面。...
阅读(1371) 评论(0)
93条 共7页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:274696次
    • 积分:3693
    • 等级:
    • 排名:千里之外
    • 原创:82篇
    • 转载:10篇
    • 译文:1篇
    • 评论:351条
    最新评论