S3FD: Single Shot Scale-invariant Face Detector

标签: 人脸检测算法 深度学习
3598人阅读 评论(3) 收藏 举报
分类:

一篇同样着重处理人脸尺度问题的检测文章。

方法可以看作是对SSD的改进与完善,速度较慢(36FPS with Titan X & VGA)。

文章链接: 《S3FD: Single Shot Scale-invariant Face Detector》

code will be available at https://github.com/sfzhang15/SFD

1. 方法介绍

如上图,整体方法结构和SSD一致,在不同层使用不同尺度的anchor预测目标。

2. 要点介绍

(1)Reasons behind the problem of anchor-based methods

  • (a) 由于spatial pooling,小尺度人脸最后拥有的特征太少;
  • (b) anchor与感受野的尺度不匹配,且都太大而不适宜小人脸;
  • (c) 离散尺度的anchor预测连续尺度的人脸,导致tiny face和outer face均不能获得足够多的匹配;
  • (d) 小的anchor在进行匹配时会面临更多的负样本。

(2)Scale-equitable framework

首先看下表:(6个检测分支对应的空间stride、anchor以及感受野(RF)的大小)

上表所表示的网络之所以如此设计,主要考虑下列两个因素:

* Anchor的size应当比(理论上的)感受野小*

理论上的感受野是指该范围内的任意输入都会影响到输出。 但实际上,这种影响不是均匀的,于是中间的输入对输出影响越重,类似于一种中心高斯分布。如下图(a)(b)所示:

我们应当使得anchor的size与有效感受野相匹配,有效感受野如上图(b)中的蓝色圆圈所示。其中,黑色框为理论感受野。

* 不同size的anchor应当具有相同的空间密度分布*

如上图(c)所示,anchor的size与stride的比例始终保持为4。 这也就意味着,即使在不同尺度上,滑动过一定百分比(占anchor大小的百分比)的像素,得到的anchor的数量是一致的。

(3)Scale compensation anchor matching strategy

如图2.1(c)所示,平均匹配到的anchor数量约为3,太少;与anchor size差距较远的人脸匹配成功的数量尤其少(tiny face + outer face)。为了改善这种状况,主要采取了下列两种手段:

  • (1)将原有的匹配阈值由0.5降到0.35,以此来增加更多的成功匹配。 (但该策略只能提高平均匹配数量,但不能改善tiny face和outer face。)
  • (2)选出所有IOU大于0.1得到anchor并进行排序,从中选TOP N。(N为平均成功匹配数量。)

处理后的效果如下:

(4)Max-out background label

下表是一张640x640图片上所能产生的不同size的anchor的数量,显然尺寸小的anchor占了绝大比例,这也是false positive的主要来源。

为了减少小目标所产生的false positive,文中采用了下面的方法来加强对小目标的区分:

conv3_3层(小目标产生最多的层),输出通道数为\((N_s + 4)\),其中 \(N_s > 2\),而其它所有检测层的输出通道数均为(2+4),表示二分类和4个bounding box坐标。 \(N_s\)中包含了1个正样本的概率以及\(N_s-1\)个负样本概率,我们从负样本概率中选出最大值与正样本概率一起完成之后的softmax二分类。 这种看似多余的操作实际上是通过提高分类难度来加强分类能力。

3. 实验结果

FDDB上的测试结果:

这里写图片描述

查看评论

Face Paper: S3FD论文详解

一篇同样着重处理人脸尺度问题的检测文章。 方法可以看作是对SSD的改进与完善,速度较慢(36FPS with Titan X & VGA)。 文章链接: 《S3FD: Single Sho...
  • wfei101
  • wfei101
  • 2018-01-06 22:17:25
  • 316

人脸检测--S3FD: Single Shot Scale-invariant Face Detector

S3FD: Single Shot Scale-invariant Face Detector CVPR2017 Caffe code will be available本文针对基于 anchor...
  • zhangjunhit
  • zhangjunhit
  • 2017-08-22 11:07:25
  • 2830

人脸检测之S3FD

该方法出自论文S3FD: Single Shot Scale-invariant Face Detector 文章改进点: (1)基于不同layer层的不同scale的anchor策略 ...
  • qq_14845119
  • qq_14845119
  • 2018-02-25 22:05:58
  • 260

S3FD:Single Shot Scale-invariant Face Detector

1、主要贡献:       (1) proposing a scale-equitable face detection framework to handle different scales o...
  • quyouyang0925
  • quyouyang0925
  • 2017-09-06 10:21:43
  • 224

人脸检测--Recurrent Scale Approximation for Object Detection in CNN

Recurrent Scale Approximation for Object Detection in CNN ICCV2017 https://github.com/sciencefans/...
  • zhangjunhit
  • zhangjunhit
  • 2017-08-22 15:02:29
  • 1837

软件系统开发流程

公司没有软件开发流程,几句话描述了需求,然后自己做设计,开发和测试。 我自己先分析需求,然后做数据库设计,以及界面设计,开发,编码,测试,在开发一半的时候,发现数据库表还需要加一个字段,然后后台代码...
  • hecongqi
  • hecongqi
  • 2011-09-22 17:45:30
  • 739

人脸检测识别文献阅读总结

1 在人脸检测的时候需要结合人脸特征点对齐来综合考虑人脸检测问题,因为人脸特征点对齐有助于提高人脸检测性能 下面的文献都论证了这个思想: Joint cascade face detection...
  • zhangjunhit
  • zhangjunhit
  • 2017-10-20 15:36:59
  • 987

Reading Note: $ S^3FD $: Single Shot Scale-invariant Face Detector

TITLE: S3FDS3FDS^3FD: Single Shot Scale-invariant Face Detector AUTHOR: Shifeng Zhang, Xiangyu Zhu...
  • joshua_1988
  • joshua_1988
  • 2018-03-04 10:21:46
  • 34

opencv 介绍 SIFT(Scale-Invariant Feature Transform)

• 学习 SIFT 算法的概念 • 学习在图像中查找 SIFT 关键点和描述符
  • u010682375
  • u010682375
  • 2017-05-30 19:57:18
  • 466
    个人资料
    持之以恒
    等级:
    访问量: 77万+
    积分: 7549
    排名: 3607