关闭

S3FD: Single Shot Scale-invariant Face Detector

标签: 人脸检测算法深度学习
2774人阅读 评论(3) 收藏 举报
分类:

一篇同样着重处理人脸尺度问题的检测文章。

方法可以看作是对SSD的改进与完善,速度较慢(36FPS with Titan X & VGA)。

文章链接: 《S3FD: Single Shot Scale-invariant Face Detector》

code will be available at https://github.com/sfzhang15/SFD

1. 方法介绍

如上图,整体方法结构和SSD一致,在不同层使用不同尺度的anchor预测目标。

2. 要点介绍

(1)Reasons behind the problem of anchor-based methods

  • (a) 由于spatial pooling,小尺度人脸最后拥有的特征太少;
  • (b) anchor与感受野的尺度不匹配,且都太大而不适宜小人脸;
  • (c) 离散尺度的anchor预测连续尺度的人脸,导致tiny face和outer face均不能获得足够多的匹配;
  • (d) 小的anchor在进行匹配时会面临更多的负样本。

(2)Scale-equitable framework

首先看下表:(6个检测分支对应的空间stride、anchor以及感受野(RF)的大小)

上表所表示的网络之所以如此设计,主要考虑下列两个因素:

* Anchor的size应当比(理论上的)感受野小*

理论上的感受野是指该范围内的任意输入都会影响到输出。 但实际上,这种影响不是均匀的,于是中间的输入对输出影响越重,类似于一种中心高斯分布。如下图(a)(b)所示:

我们应当使得anchor的size与有效感受野相匹配,有效感受野如上图(b)中的蓝色圆圈所示。其中,黑色框为理论感受野。

* 不同size的anchor应当具有相同的空间密度分布*

如上图(c)所示,anchor的size与stride的比例始终保持为4。 这也就意味着,即使在不同尺度上,滑动过一定百分比(占anchor大小的百分比)的像素,得到的anchor的数量是一致的。

(3)Scale compensation anchor matching strategy

如图2.1(c)所示,平均匹配到的anchor数量约为3,太少;与anchor size差距较远的人脸匹配成功的数量尤其少(tiny face + outer face)。为了改善这种状况,主要采取了下列两种手段:

  • (1)将原有的匹配阈值由0.5降到0.35,以此来增加更多的成功匹配。 (但该策略只能提高平均匹配数量,但不能改善tiny face和outer face。)
  • (2)选出所有IOU大于0.1得到anchor并进行排序,从中选TOP N。(N为平均成功匹配数量。)

处理后的效果如下:

(4)Max-out background label

下表是一张640x640图片上所能产生的不同size的anchor的数量,显然尺寸小的anchor占了绝大比例,这也是false positive的主要来源。

为了减少小目标所产生的false positive,文中采用了下面的方法来加强对小目标的区分:

conv3_3层(小目标产生最多的层),输出通道数为\((N_s + 4)\),其中 \(N_s > 2\),而其它所有检测层的输出通道数均为(2+4),表示二分类和4个bounding box坐标。 \(N_s\)中包含了1个正样本的概率以及\(N_s-1\)个负样本概率,我们从负样本概率中选出最大值与正样本概率一起完成之后的softmax二分类。 这种看似多余的操作实际上是通过提高分类难度来加强分类能力。

3. 实验结果

FDDB上的测试结果:

这里写图片描述

2
0
查看评论

人脸检测--S3FD: Single Shot Scale-invariant Face Detector

S3FD: Single Shot Scale-invariant Face Detector CVPR2017 Caffe code will be available本文针对基于 anchor 的检测器对 小的人脸检测率低的问题进行了分析和改进。基于 anchor 的目标检测发展迅速,人脸检...
  • zhangjunhit
  • zhangjunhit
  • 2017-08-22 11:07
  • 2362

Face Paper: S3FD论文详解

一篇同样着重处理人脸尺度问题的检测文章。 方法可以看作是对SSD的改进与完善,速度较慢(36FPS with Titan X & VGA)。 文章链接: 《S3FD: Single Shot Scale-invariant Face Detector》 code ...
  • wfei101
  • wfei101
  • 2018-01-06 22:17
  • 116

软件系统开发流程

公司没有软件开发流程,几句话描述了需求,然后自己做设计,开发和测试。 我自己先分析需求,然后做数据库设计,以及界面设计,开发,编码,测试,在开发一半的时候,发现数据库表还需要加一个字段,然后后台代码又需要全部重新修改一遍。这一方面是自己的思维不够严谨,还有就是开发的流程不规范所
  • hecongqi
  • hecongqi
  • 2011-09-22 17:45
  • 708

sfd

454) {this.resized=true; this.width=454; this.style.cursor=hand; this.alt=点击查看大图; this.title=点击查看大图;}" title="点击查看大图" style="CURSO...
  • hhhjiake
  • hhhjiake
  • 2008-05-19 01:42
  • 127

sfd pac

The SFD sequence is 64 symbols long for 110 kbps data rate and 8 symbols long for the other two supported data rates of 850 kbps and 6.8 Mbps. The re...
  • gtkknd
  • gtkknd
  • 2015-02-23 10:23
  • 438

ScaleFace —— 尺度友好人脸检测

一篇关于如何处理多尺度人脸检测的文章。 从核心方法上来说和SSD没有本质的区别,只不过在实现细节上做了一些更为细致的工作。文章链接: 《Face Detection through Scale-Friendly Deep Convolutional Networks》1. 方法介绍如上图,采用Res...
  • shuzfan
  • shuzfan
  • 2017-09-07 11:57
  • 1205

在caffe 中添加Scale-invariant loss

目录目录一简介 二创建ScaleInvariantLoss Layer caffeproto scale_invariant_loss_layerhpp scale_invariant_loss_layercpp scale_invariant_loss_layercu一、简介 Scale-inva...
  • seven_first
  • seven_first
  • 2016-10-24 19:27
  • 1164

SIFT(Scale-invariant feature transform, 尺度不变特征转换)特征

SIFT算法的全称是Scale-invariant feature transform,尺度不变特征转换,是一种不随图像尺度旋转变化而变化的特征,因此SIFT特征不会随着图像的放大缩小,或者旋转而改变,同时由于在提取特征时做的一些特殊处理,使得SIFT特征对于光照变化也有比较强的适应性。以下是算法流...
  • GarfieldEr007
  • GarfieldEr007
  • 2016-02-29 19:39
  • 1821

S3FD: Single Shot Scale-invariant Face Detector

一篇同样着重处理人脸尺度问题的检测文章。 方法可以看作是对SSD的改进与完善,速度较慢(36FPS with Titan X & VGA)。文章链接: 《S3FD: Single Shot Scale-invariant Face Detector》code will be aviable ...
  • shuzfan
  • shuzfan
  • 2017-09-11 14:03
  • 2774
    个人资料
    • 访问:650082次
    • 积分:6840
    • 等级:
    • 排名:第4069名
    • 原创:135篇
    • 转载:11篇
    • 译文:1篇
    • 评论:523条