漫步微积分六——极限的概念

前面给出的导数定义都依赖于函数极限的概念,我们对极限只做了最简短的解释。现在,我们已经知道了这一概念的目的,接下来关心一下它的意义。

考虑函数 f(x) ,自变量在点 a 的领域内都有定义,但是a 点本身没定义。假设存在一个实数值 L ,当x越来越接近 a 时,f(x)越来越接近 L (图1)。对于这种情况我们说L x 趋近a f(x) 的极限,用符号表示为

limxaf(x)=L.(1)


这里写图片描述
图1

如果不存在这样的实数 L ,我们说x趋近 a f(x)没有极限,或者 limxaf(x) 不存在。另一种和(1)等价且被广泛使用的符号是
f(x)Lasxa
现在考虑(1)式的意义, x 等于a f(x) 会如何是没有意义的;而对于 x 接近a时的 f(x) 值才是有意义的,理解这一点非常重要。

对于(1)式来说,这些非正式的描述对我们直观的理解非常有利,并且对于实际需求也足够了。然而,作为定义,他们又不严谨也不精确,因为有越来越接近和趋近这样的含糊用语。(1)式的精确意义非常重要,所以我们不能只留给学生去想象。我们尽可能简洁又清晰的给出一个令人满意的定义。接下来的部分,阅读的时候最好比平时更仔细些,及饬令他们自然的不耐烦用什么似乎是过度的挑剔的精度。

首先分析一个具体的实例,希望从中可以提取出通用情况的本质

limx02x2+xx=1
这里我们必须验证的函数是
y=f(x)=2x2+xx
这个函数在 x=0 处无定义,除了 x0 外的所有 x ,化简表达式的
f(x)=x(2x+1)x=2x+1.
从图2中,我们可以清楚的看到,当 x 趋近于0时, f(x) 趋近于 1 。为了给出定量的描述,我们需要f(x)与极限值 1 之差的公式:
f(x)1=(2x+1)1=2x.


这里写图片描述
图2

从公式中可以看到 f(x) 可以越来越接近 1 ,也就是说,当x无线靠近 0 时,这个差可以变得任意小。
f(x)1f(x)1==1100  whenx=120011000whenx=12000
更一般的,让 ϵ 是任意正数,无论多小,定义 δ 为它的一半 δ=12ϵ 。那么当 x 0的距离小于 δ 时, f(x) 1 的距离将小于ϵ;也就是
if|x|<δ=12ϵthen|f(x)1|=2|x|<ϵ.
这个说法比 x 趋近0 f(x) 趋近 1 的模糊说法更精确。它精确地告诉我们x必须接近 0 到什么程度时,才能保证f(x) 靠近 1 的程度。当然,x不能等于 0 ,因为x=0 f(x) 没意义。

现在这个 ϵδ 定义应该很容易掌握了:对于任意一个正数 ϵ ,存在一个正数 δ ,使得

|f(x)L|<ϵ
其中 xa ,且满足不等式
|xa|<δ
换句话说:如果给定一个 ϵ>0 ,那么可以找到这样的一个正数 δ ,满足当 x a δ 邻域内时, f(x) 将在 L ϵ邻域内。跟之前一样,我们只关心 x=a 附近的 f(x) 行为,不在乎 x=a 处发生什么。

用函数 y=f(x) 的图像来解释这个想法会更直观一些,如图3。图中, 2ϵ 是水平带的宽度,它的中心线是 y=L 2δ 是垂直带的宽度,它的中心线是 x=a ,上面的定义可以表达为

对于每条水平带,无论它多窄,存在这样的一条垂直带,如果 xa 限定在垂直带内,那么对应部分限定在水平带内。


这里写图片描述
图3

(1)式的精确定义应该是我们最关注的,并且它在微积分理论中扮演着重要的角色。但是,对于极限直观的理解足够满足我们的实际需要,从这个层面来说,下面的例子现在应该不难解决了。

例1:首先

limx2(3x+4)=10
x 趋近2时, 3x 趋近 6 3x+4趋近 6+4=10 。下一个
limx1x21x1=limx1(x+1)(x1)x1=limx1(x+1)=2
我们首先注意到函数 (x21)/(x1) x=1 处没有定义,因为此时分子分母均等于 0 。但是这无关紧要,因为重要的是x 1 附近而不是1处的函数行为,所以对所有 x 均可进行消去操作,得到x+1,它趋近 2

例2:考虑一些极限不存在的函数是非常有启发意义的。例如图4,这些极限行为通过图像都很容易理解。第一种情况,当x为正数时,函数等于 1 ,当x为负数时,函数等于 1 ,在 x=0 处没有定义,所以当 x 趋近0时,函数不存在一个确定的数。专业点来说就是极限不存在,记为

limx0+x|x|=1limx0x|x|=1.


这里写图片描述
图4

符号 x0+ x0 表明变量 x 分别从正向(右边)和反向(左边)趋近0。另外两个极限因为 x 趋近0时绝对值任意大所以也不存在极限。用符号表示就是
limx0+1x=,limx01x=,limx01x2=.
记住:(1)式中的数 L 必须是实数;L=不符合要求。

计算极限的主要规则就是我们期待的那样。例如

limxax=a;
如果 c 是常数,那么
limxac=c.
还有,如果 limxaf(x)=L limxag(x)=M ,那么
limxa[f(x)+g(x)]limxa[f(x)g(x)]limxaf(x)g(x)limxaf(x)g(x)====L+M,LM,LM,LM(M0).
也就是说,和的极限是极限的和,差,乘和商同样满足。这些叫做极限法则或者极限定理。

我们之前说过微积分是解决问题的一种技能,不是逻辑的分支。相比于演绎推理,它更多的是处理直观理解带来的方法。当然了,我们将试图让读者相信我们论述的真实性和过程的合法性。然而,为了避免用大量难理解的理论材料充斥文本,我们尽可能简洁,不那么正式的表达。(对于这里陈述的极限性质,相关证明可能以番外的形式给出,至于是否更新,还是看呼声吧,哈哈哈)

在结束本部分主题之前,我们讨论两个具体的三角极限。之后会发现他们非常重要。第一个是

limθ0sinθθ(2)

注意,这里的 θ 是弧度。我们不能简单的设 θ=0 ,因为结果将是无意义的等式 0/0 。我们注意到它不同于下面的代数极限,
limx03x2+2xx=limx0x(3x+2)x=limx0(3x+2)=2
因为 sinθ 无法明显的消去 θ 。为了对(2)式的函数行为有个印象,我们计算几个很小的 θ 对应的比值。我们注意到,如果用 θ 代替 θ ,我们有
sinθθ=sinθθ=sinθθ
所以我们只关于正的 θ 。利用计算器我们得到几个八位小数值(表1)。这些值说明(但不能证明!)


这里写图片描述
表1

limθ0sinθθ=1.(3)
现在我们从几何角度来证实(3)式。让 P Q是单位圆上彼此濒临的两个点(图5),让 PQ¯¯¯¯¯ PQˆ 表示两点的弦长和弧长。那么当两点移动到一起时,弦长比弧长趋近于 1
chord length PQ¯¯¯¯¯arc length PQˆ1asPQˆ0.

这里写图片描述
图5

对于图中的符号,这个几何陈述等价于
2sinθ2θ=sinθθ1as2θ0orθ0,
这就是(3)式。

第二个极限是

limθ01cosθθ=0.(4)
利用三角恒等式 sin2θ+cos2θ=1 以及(3)式得:
limθ01cosθθ======limθ0(1cosθθ1+cosθ1+cosθ)limθ01cos2θθ(1+cosθ)limθ0sin2θθ(1+cosθ)limθ0(sinθθsinθ1+cosθ)(limθ0sinθθ)(sinθ1+cosθ)101+1=0.
最后一步用到了当 θ0 sinθ0 cosθ1 ,从图5的 sinθ cosθ 几何意义可以很容易证实他们。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值