微积分:极限的定义、夹逼定理

本文为《普林斯顿微积分读本》的读书笔记

极限的定义

极限

  • 极限的定义:
    在这里插入图片描述
    • δ \delta δ 的选取依赖于 ε \varepsilon ε 的选取;定义可以这样理解:
      • 首先选取一个 ε \varepsilon ε,然后以 a a a 为中心,选取一个 δ \delta δ 使 [ a − δ , a + δ ] [a-\delta,a+\delta] [aδ,a+δ] 范围内的函数值落在 L − ε L-\varepsilon Lε L + ε L+\varepsilon L+ε 之间;此时我们只看 [ a − δ , a + δ ] [a-\delta,a+\delta] [aδ,a+δ] 范围内的函数部分,得到了一个函数值的区间
      • 之后我们再选取一个更小的 ε \varepsilon ε L − ε L-\varepsilon Lε L + ε L+\varepsilon L+ε 两条线也更加接近;重复上述步骤,最后得到了一个更小的函数值区间;这样,当 ε \varepsilon ε 接近于 0 时,最终得到的函数值的区间即为极限
        在这里插入图片描述

无穷极限

  • 对于 无穷极限 的定义:
    • l i m x → a f ( x ) = ∞ \mathop{lim}\limits_{x\rightarrow a}f(x)=\infty xalimf(x)=
      在这里插入图片描述
      在这里插入图片描述
    • l i m x → a f ( x ) = − ∞ \mathop{lim}\limits_{x\rightarrow a}f(x)=-\infty xalimf(x)=
      在这里插入图片描述

渐近线

  • f f f x = a x=a x=a 处有一条垂直渐近线 l i m x → a − f ( x ) \mathop{lim}\limits_{x\rightarrow a^-}f(x) xalimf(x) l i m x → a + f ( x ) \mathop{lim}\limits_{x\rightarrow a^+}f(x) xa+limf(x) 其中至少有一个极限是 ∞ \infty − ∞ -\infty ;例如,在下图中,
    • l i m x → 0 − f ( x ) = − ∞ , l i m x → 0 + f ( x ) = + ∞ \mathop{lim}\limits_{x\rightarrow0^-}f(x)=-\infty,\mathop{lim}\limits_{x\rightarrow0^+}f(x)=+\infty x0limf(x)=,x0+limf(x)=+
    • l i m x → 0 g ( x ) = l i m x → 0 − g ( x ) = l i m x → 0 + g ( x ) = + ∞ \mathop{lim}\limits_{x\rightarrow0}g(x)=\mathop{lim}\limits_{x\rightarrow0^-}g(x)=\mathop{lim}\limits_{x\rightarrow0^+}g(x)=+\infty x0limg(x)=x0limg(x)=x0+limg(x)=+
    • 其中 x = 0 x=0 x=0 f , g f,g f,g 的垂直渐近线
      在这里插入图片描述

∞ \infty − ∞ -\infty 处的极限

  • 类似无穷极限的定义,我们也能写出在 ∞ \infty − ∞ -\infty 处的极限:
    在这里插入图片描述
  • 类似地, l i m x → ∞ f ( x ) = ∞ \mathop{lim}\limits_{x\rightarrow \infty}f(x)=\infty xlimf(x)= 表示对于选区的任意 M > 0 M>0 M>0,都可以选取 N > 0 N>0 N>0,使得 ∀ x > N \forall x>N x>N,有 f ( x ) > M f(x)>M f(x)>M

  • f f f y = L y = L y=L 处有一条右侧水平渐近线: l i m x → ∞ f ( x ) = L \mathop{lim}\limits_{x\rightarrow \infty}f(x)=L xlimf(x)=L.
  • f f f y = L y = L y=L 处有一条左侧水平渐近线: l i m x → − ∞ f ( x ) = L \mathop{lim}\limits_{x\rightarrow -\infty}f(x)=L xlimf(x)=L.

左极限、右极限、双侧极限

  • 右极限:将下面极限定义中的 0 < ∣ x − a ∣ < δ 0<|x-a|<\delta 0<xa<δ 区间改为 0 < x − a < δ 0<x-a<\delta 0<xa<δ 区间即可;左极限定义同理
    在这里插入图片描述
  • l i m x → a f ( x ) = L ⇔ l i m x → a − f ( x ) = l i m x → a + f ( x ) = L \mathop{lim}\limits_{x\rightarrow a}f(x)=L \Leftrightarrow \mathop{lim}\limits_{x\rightarrow a^-}f(x)=\mathop{lim}\limits_{x\rightarrow a^+}f(x)=L xalimf(x)=Lxalimf(x)=xa+limf(x)=L
    • 左极限和右极限不相等或不存在时,双侧极限不存在 (用 DNE 表示)
      在这里插入图片描述

应用定义的例子

证明 l i m x → 3 x 2 = 9 \mathop{lim}\limits_{x\rightarrow 3}x^2=9 x3limx2=9 (不使用连续性)

  • 任取 ε \varepsilon ε 得到区间 ( 9 − ε , 9 + ε ) (9-\varepsilon,9+\varepsilon) (9ε,9+ε)
  • 如果 ε < 8 \varepsilon<8 ε<8
    • 则选取对应的 δ = ε 8 \delta=\frac{\varepsilon}{8} δ=8ε,因此 x ∈ [ 3 − ε 8 , 3 + ε 8 ] x\in[3-\frac{\varepsilon}{8},3+\frac{\varepsilon}{8}] x[38ε,3+8ε]
      • ( x − 3 ) ( x + 3 ) < ( ε 8 ) ( 4 + 3 ) (x-3)(x+3)<(\frac{\varepsilon}{8})(4+3) (x3)(x+3)<(8ε)(4+3),得到 x 2 < 9 + 7 ε 8 x^2<9+\frac{7\varepsilon}{8} x2<9+87ε,因此容忍上限满足条件
      • ( x − 3 ) ( x + 3 ) > ( − ε 8 ) ( 2 + 3 ) (x-3)(x+3)>(-\frac{\varepsilon}{8})(2+3) (x3)(x+3)>(8ε)(2+3),得到 x 2 > 9 − 5 ε 8 x^2>9-\frac{5\varepsilon}{8} x2>985ε,因此容忍下限满足条件
  • 如果 ε ≥ 8 \varepsilon\geq8 ε8,则取 δ = 1 \delta=1 δ=1

证明 l i m x → 0 1 x 2 = ∞ \mathop{lim}\limits_{x\rightarrow 0}\frac{1}{x^2}=\infty x0limx21=

  • 任取 M > 0 M>0 M>0,取 δ = 1 M \delta=\frac{1}{\sqrt M} δ=M 1 即可

证明 l i m x → ∞ s i n ( x )   D N E \mathop{lim}\limits_{x\rightarrow \infty}sin(x)\ DNE xlimsin(x) DNE

  • 假设该极限存在且极限值为 L L L. 任选 ε > 0 \varepsilon > 0 ε>0, 然后我需要选取一个很大的数 N N N, 只要 x > N x > N x>N, 就有 ∣ s i n ( x ) − L ∣ < ε |sin (x) - L| < \varepsilon sin(x)L<ε.
    • 假设选取 ε = 1 2 \varepsilon=\frac{1}{2} ε=21. 这意味着, 我需要保证, 只要 x > N x > N x>N 就有 ∣ s i n ( x ) − L ∣ < 1 2 |sin (x)- L| < \frac{1}{2} sin(x)L<21. 从另一种方式来看, 就是对于所有的 x > N x > N x>N, s i n ( x ) sin (x) sin(x) 必须落在区间 ( L − 1 2 , L + 1 2 ) (L-\frac{1}{2}, L +\frac{1}{2}) (L21,L+21) 中.
      • 不幸的是, 不管 L L L N N N 是什么, 这都是不可能的! 我们首先选取大于 N N N π \pi π 的倍数:不妨设这个数为 n π n\pi nπ. 其中 n n n 是一个整数. 那么, ∣ s i n ( n π + 3 π / 2 ) − s i n ( n π + π / 2 ) ∣ = 2 |sin (n\pi + 3\pi/2)-sin(n\pi+\pi/2)|=2 sin(nπ+3π/2)sin(nπ+π/2)=2,
    • 因此, 该极限不可能是一个有限的数 L L L.
  • 而该极限更不可能是 ∞ \infty − ∞ -\infty ,因此极限不存在

夹逼定理 (三明治定理)

  • 如果对于所有的在 a a a 附近的 x x x, 都有 g ( x ) ≤ f ( x ) ≤ h ( x ) g (x)\leq f (x)\leq h (x) g(x)f(x)h(x), 即 f ( x ) f (x) f(x) 被夹在 g ( x ) g (x) g(x) h ( x ) h (x) h(x) 之间. 且 l i m x → a g ( x ) = l i m x → a h ( x ) = L \mathop{lim}\limits_{x\rightarrow a}g(x)=\mathop{lim}\limits_{x\rightarrow a}h(x)=L xalimg(x)=xalimh(x)=L,则 l i m x → a f ( x ) = L \mathop{lim}\limits_{x\rightarrow a}f(x)=L xalimf(x)=L
    • 证明:任取 ε > 0 \varepsilon>0 ε>0,则存在 δ \delta δ 使 x ∈ [ a − δ , a + δ ] x\in[a-\delta,a+\delta] x[aδ,a+δ] 时,有 L − ε < g ( x ) < L + ε , L − ε < h ( x ) < L + ε L-\varepsilon<g(x)<L+\varepsilon,L-\varepsilon<h(x)<L+\varepsilon Lε<g(x)<L+ε,Lε<h(x)<L+ε,因此有 L − ε < g ( x ) ≤ f ( x ) ≤ h ( x ) < L + ε L-\varepsilon<g(x)\leq f(x)\leq h(x)<L+\varepsilon Lε<g(x)f(x)h(x)<L+ε,证明完毕

  • 例如,用夹逼定理求 l i m x → 0 + x s i n ( 1 x ) \mathop{lim}\limits_{x\rightarrow 0^+}xsin(\frac{1}{x}) x0+limxsin(x1)
    在这里插入图片描述
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值