Surf特征匹配点提纯

原创 2016年08月28日 21:09:37

本文将介绍Surf特征匹配得到的特征匹配点提纯方法

      surf匹配代码:

cv::Ptr<Feature2D> p_ex1 = xfeatures2d::SURF::create();//生成对应描述符
			p_ex1->detect(thisFHalf_1, thisFrameKeypoints);
			p_ex1->detect(nextFHalf_2, nextFrameKeypoints);

			p_ex1->compute(thisFHalf_1, thisFrameKeypoints, thisFrameDescriptor);
			p_ex1->compute(nextFHalf_2, nextFrameKeypoints, nextFrameDescriptor);
std::vector< cv::DMatch > matches_1;
			//std::vector< cv::DMatch > matches_2;
			std::vector<cv::DMatch> good_matches;
			std::vector<cv::DMatch> good_matches2;
			BFMatcher matcher;
			//FlannBasedMatcher matcher;
			//matcher.knnMatch()
			matcher.match(thisFrameDescriptor, nextFrameDescriptor, matches_1);
获得匹配点对matches_1,但是surf获得的匹配点对中存在相当多的误匹配,如何剔除误匹配,提取精度较高的匹配点对。

(一)通过距离判断来提纯,这也是常用的方法      

//消除错配点
			double min_dist = 100;
			double max_dist = 0;
			for (int i = 0; i < matches_1.size(); i++)
			{
				double dist = matches_1[i].distance;
				if (dist < min_dist)
				{
					min_dist = dist;
				}
				if (dist > max_dist)
				{
					max_dist = dist;
				}
			}
			//std::vector<cv::DMatch> good_matches;

			for (int i = 0; i < matches_1.size(); i++)
			{
				if (matches_1[i].distance < (3 * min_dist))
				{
					good_matches.push_back(matches_1[i]);
					//surfgoodnum++;
				}
			}
通常设置3*min_dist,距离越小精度也高,但数量也少。

(二)正反匹配提纯

cv::Mat img_match;
int num = 0;
for (int a = 0; a < matches_1.size(); a++)
{
	for (int b = 0; b < matches_2.size();b++)
	{
            if (thisFrameKeypoints[matches_1[a].queryIdx].pt == thisFrameKeypoints[matches_2[b].trainIdx].pt && nextFrameKeypoints[matches_1[a].trainIdx].pt == nextFrameKeypoints[matches_2[b].queryIdx].pt)
	    {
		if (fabs(thisFrameKeypoints[matches_1[a].queryIdx].pt.x - thisFrameKeypoints[matches_1[a].trainIdx].pt.x)<20 && fabs(thisFrameKeypoints[matches_1[a].queryIdx].pt.y - thisFrameKeypoints[matches_1[a].trainIdx].pt.y)<20)
		{
			good_matches.push_back(matches_1[a]);
		}
						
	 }
     }
}
如果前后都能匹配则认为该点对为匹配点对。(效果不佳,只能去除部分)

(三)单应消除错误匹配点

//单应去除匹配错点
<span style="white-space:pre">	</span>std::vector<cv::Point2f> srcPoints_1, dstPoints_1;
<span style="white-space:pre">	</span>for (std::vector< cv::DMatch >::iterator it = matches_1.begin(); it != matches_1.end(); it++)
<span style="white-space:pre">	</span>{
<span style="white-space:pre">	</span>    srcPoints_1.push_back(thisFrameKeypoints[it->queryIdx].pt);//ThisFrame
<span style="white-space:pre">	</span>    dstPoints_1.push_back(nextFrameKeypoints[it->trainIdx].pt);//NextFrame
<span style="white-space:pre">	</span>}
<span style="white-space:pre">	</span>cv::Mat H_1;
<span style="white-space:pre">	</span>float reprojectionThreshold = 0.1;
        std::vector<cv::DMatch> inliers;
<span style="white-space:pre">	</span>std::vector<unsigned char> inliersMask(srcPoints_1.size());
<span style="white-space:pre">	</span>H_1 = findHomography(
<span style="white-space:pre">	</span>      srcPoints_1, dstPoints_1,
<span style="white-space:pre">	</span>      CV_FM_RANSAC, reprojectionThreshold,
<span style="white-space:pre">	</span>      inliersMask);
<span style="white-space:pre">	</span>      for (size_t i = 0; i < inliersMask.size(); i++)
<span style="white-space:pre">		</span>{
<span style="white-space:pre">		</span>   if (inliersMask[i])
<span style="white-space:pre">			</span>inliers.push_back(matches_1[i]);
<span style="white-space:pre">	</span>         }
<span style="white-space:pre">		</span>matches_1.swap(inliers);
<span style="white-space:pre">		</span>std::cout << matches_1.size() << std::endl;
匹配点对根据RANSAC计算单应矩阵,再根据单应矩阵提纯。








计算机视觉代码大全

朝闻道 朝闻道,夕可死矣!为了成为IT高手,为了挽回我失去的青春,也为了我亲爱的家人,下决心刻苦学习编程知识,虽九死而不悔! 金头盔飞行员蒋佳冀:知道了不行,熟悉也不够,要真正进入潜意识,成为条件反...

非滤波单目视觉SLAM系统

非滤波单目视觉SLAM系统 A survey on non-filter-based monocular VisualSLAM systems Taylor Guo, 2016年9月12日 -20...

使用RANSAC提纯SIFT和SURF特征点,达到鲁棒匹配的效果(OpenCV 2.4.13下,源码)

#include #include #include #include #include #include using namespace std; using namespace cv...

使用RANSAC提纯ORB和BRISK特征点,达到鲁棒匹配的效果(OpenCV 2.4.13下,源码)

#include #include #include #include #include using namespace std; using namespace cv; int main...

使用RANSAC提纯KAZE和AKAZE特征点,达到鲁棒匹配的效果(OpenCV 3.2.0下,源码)

KAZE是EECV 2012年新提出来的特征点检测和描述算法,AKAZE是在KAZE基础上进行改进的,详细原理参见作者官网和github上的源码: http://www.robesafe.com/pe...

ransac算法–基于几何关系的图像特征匹配点对提纯

ransac的原理,有一些不错的资料已经详细的叙述,刚开始学习的时候我看的是Marco Zuliani的>,这份资料讲得不错,想要详细了解其原理的同学不妨看看这份资料。本着实用为主的原则,此处,主要描...

SURF/SIFT特征点图像匹配示例

  • 2016年11月17日 23:34
  • 3.51MB
  • 下载

OpenCV中feature2D学习——SIFT和SURF算子实现特征点提取与匹配

概述       之前的文章SURF和SIFT算子实现特征点检测简单地讲了利用SIFT和SURF算子检测特征点,在检测的基础上可以使用SIFT和SURF算子对特征点进行特征提取并使用匹配函数...

opencv3.2 SURF实现特征点匹配

opencv3.2中SurfFeatureDetector、SurfDescriptorExtractor、BruteForceMatcher这三个的使用方法已经和原先2.4版本前不一样了。使用方法示...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Surf特征匹配点提纯
举报原因:
原因补充:

(最多只允许输入30个字)