AI逻辑实现-取舍行为树还是状态机

原创 2016年08月30日 14:57:20

AI逻辑实现-选择行为树还是状态机?
关注AI的朋友可能会看过赖勇浩翻译的《有限状态机时代终结的10大理由》 ,里面谈到了状态机的诸多弊端。同时在ppt(附上下载地址)中述说了行为树的诸多优点,这里就不在赘述了。更多得是想总结一下自己玩了一阵子行为树后的一些实践体会。

个人体会:
状态机来实现AI更符合我们思维的朴素表达,我想任何一个有经验的coder都能直观得去写一个自己的AI状态机。它用于一些简单的ai其实是没有大问题的,(搜索敌人,靠近,攻击,死亡)用状态机其实更加便捷。但是面对一些复杂的ai逻辑实现就会显得比较繁杂。同时,当需要对现有行为逻辑进行扩展的时候,代码上就会显得比较吃力,因为要维护的状态量会成倍增加。
这里写图片描述
行为树,实现AI的过程更加得有技巧,框架设计者较为全面考虑了我们可能会遇到的种种情况,把每种情况都抽象成了一个类型的节点,而我们要做的就是按照规范去写节点,然后把节点连接成一颗行为树。更加得具有面向对象的味道,行为模块间的藕合度相对较低。

举个粗糙的例子来比较一下两者的不同:
AI行为:吃饭 睡觉 打豆豆(很消耗体力和脑力的;)

1.打豆豆 HP -= 5 / 秒 MP -= 3 / 秒
2.吃饭 HP += 10/秒 MP -= 1 / 秒
3.睡觉 MP += 15/秒 HP -= 2/秒
4.吃饭和睡觉是不可打断的动作(pending),必须执行到吃饱(HP = 100) or 睡饱(MP = 100)
5.打豆豆是瞬发动作,每帧都可以执行一次

状态机的实现逻辑图:
这里写图片描述
行为树的实现逻辑图:
这里写图片描述
其实不管你知不知道什么是selector,condition都不要紧,至少从上图,应该可以看出来,行为树节点间的联系并不像状态机那样得“紧密”。

选择两种不同的ai实现方法,也决定了具体行为的实现逻辑。
比如对于sleep动作的实现,如果是状态机:
function sleep() =
if Y == 100 then
AwakeEvent()
return
end
HP -= X
MP += Y
end
然后每一帧执行sleep()

如果是选择行为树:
function sleep()
local sleepTime = (100/15)
–不好意思乱入了一段cocos2dx的代码
self:runAction(cc.Sequence:create(cc.DelayTime:create(sleepTime),cc.CallFunc:create(cancelPending)))
local cancelPending = function()
pending = false
end
end

罗列一下行为树的概念:
对于有限状态机而言,必须明确 状态的转换方式;对于行为树,必须明确状态前提:前提条件
每一个行为必须有“前提条件” ,这决定了该行为是否被选择。
行为树的运算也是通过帧循环的update来驱动,不一定是每帧都update,但是要周期性update。
每一次run从根节点(root)开始,每一运行都会选择一个可行的子节点运行,这种选择可以是随机方式,也可以是预设好优先条件
行为树由叶子节点和中间节点组成,叶子节点是最基本的行为(如跑动,攻击),中间节点代表逻辑单元(巡逻,逃跑)。
当一个叶子节点被选择后,就会激活其对应的基本的行为
最基本的行为可能执行成功也可能失败。
高等级的行为(中间节点)是否执行成功依赖于他们的孩子节点是否执行成功。
一个子节点失败可能导致父母节点选择另外一个孩子。
除了选择(selector)一个单独的子节点行为,一个节点还可能顺序(sequence)or并行(concurrent)得运行他的所有子节点。
一个行为除了有前提条件,可能还有上下文条件(父节点or孩子节点可能存储一定的状态变量)。
高优先级的行为可能抢占低优先级的行为

转载一段akara的行为树实现方案:

  • Composite Node 组合节点
  • Decorator Node 装饰节点
  • Condition Node 条件节点
  • Action Node 行为节点

各种节点的详细描述:
* Selector Node 选择节点
描述:从头到尾,按顺序选择第一个执行条件为真的子节点,遇到True停止。
处理流程:当执行本类型Node时,它将从begin到end迭代执行自己的Child Node:如遇到一个Child Node执行后返回True,那停止迭代,本Node向自己的Parent Node也返回True;否则所有Child Node都返回False,那本Node向自己的Parent Node返回False。

  • Sequence Node 序列节点
    描述:从头到尾,按顺序执行每一个子节点,遇到False停止。
    处理流程:当执行本类型Node时,它将从begin到end迭代执行自己的Child Node:如遇到一个Child Node执行后返回False,那停止迭代,本Node向自己的Parent Node也返回False;否则所有Child Node都返回True,那本Node向自己的Parent Node返回True。

  • Parallel Node 并行节点
    描述:从头到尾,平行执行它的所有子节点。
    Parallel Selector Node: 有一个子节点True返回True,否则返回False。
    Parallel Sequence Node: 有一个子节点False返回False,否则返回True。
    Parallel Fall On All Node: 所有子节点False才返回False,否则返回True。
    Parallel Succeed On All Node: 所有子节点True才返回True,否则返回False。
    Parallel Hybird Node: 指定数量的子节点返回True或False后,才决定结果。

  • Decorator Node 装饰节点
    描述:装饰节点一般用来作为额外的附加条件。例如,时间间隔控制,次数控制,频率控制,结果取反,错误处理等。

  • Condition Node 条件节点
    描述:顾名思义,就是对应条件的节点。

  • Action Node 行为节点
    描述:顾名思义,就是用于完成某种动作的节点。

从代码实现的角度来谈下优缺点

优点:
1. 行为逻辑和状态数据分离,任何节点写好以后可以反复利用
2. 重用性高,可用通过重组不同的节点来实现不同的行为树
3. 呈线性的方式扩展,易于扩展
4. 可配置,把工作交给designer
5. 能够胜任”AI” “掉宝”等等场景。

缺点:
1. 每一帧都从root开始,有可能会访问到所以的节点,相对State Machine消耗更多的cpu
2. 任何一个简单的操作都必须要使用节点

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

状态机,层次状态机和行为树的区别以及联系

Finite State Machines 状态机: 1. 基本节点是状态。他包含了一系列运行在该状态的行为以及离开这个状态的条件。 2. 这是图。状态可以任意跳转,实现简单,但是对于大的状态机很...

Behavior Designer-行为树和有限状态机

行为树和有限状态机(例如PlayMaker)分别在什么情况下来使用呢?在很牛逼的情况下,行为树用在制作AI上,有限状态机用在一些普通的可视项目中。当然你也可以反过来用,这东西看心情。有些人说有限状态机...

做游戏长知识------基于行为树与状态机的游戏AI(一)

孙广东 2014.6.30 http://www.gameres.com/182152.html

有限状态机在程序设计中作用和意义

1.简称状态机,是表示有限个状态以及在这些状态之间的转移和动作等行为的数学模型。 2.关于状态机的一个极度确切的描述是它是一个有向图形,由一组节点和一组相应的转移函数组成。状态机通过响应一系列事件而“...

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

人工智能 有限状态机 的时代过去了

有限状态机在过去十年里变得非常流行,游戏开发者用它开发了很多极具趣味的游戏。但再好的事情也有个结束,是否到了使用比 FSM 更好的技术来完成 AI 逻辑的时代了? 让我把它改得更有建设性一些:  ...

层次状态机

我们知道状态机是AI(当然,不光是AI了)中常用的一种架构,有很多中实现方式,总体来说对于表达简单逻辑,还是很有帮助的,而且实现简单,甚至用一个switch-case就可以了,但在实践中状态机有一个致...

FSM(状态机)、HFSM(分层状态机)、BT(行为树)的区别

转自:http://www.cnblogs.com/jeason1997/p/5140201.html 游戏人工智能AI中最常听见的就是这三个词拉:  ...

从有限状态机(FSM)到行为树(Behavior Tree)(2)

模式3:根据条件跳转到多个状态,包括自跳转 这是在状态机里最常见的模式,由于是基于条件的跳转,所以可以非常方便的用选择节点和前提的组合来描述,特别值得注意的是,对于自跳转而言,其实就是维持了当前...

行为树-学习笔记(3)-rain插件做简单的敌人AI(2)

巡逻路径与行为树初步资源已上传AI学习demo巡逻路径的制作在制作AI行为树之前,先要把巡逻路径做出来。 本次制作用到 Navigation Mesh 与 Waypoint Route 这两...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:AI逻辑实现-取舍行为树还是状态机
举报原因:
原因补充:

(最多只允许输入30个字)