ISP模块之RAW DATA去噪(一)

ISP模块中的RAW DATA去噪:中值滤波方法
本文介绍了ISP模块中对RAW DATA进行去噪的重要性,特别是针对Bayer排列格式的CFA Data。文章详细讲解了中值滤波算法的原理、优缺点,并展示了如何在CFA Data上去噪,强调了分通道处理以保护颜色信息。同时提供了C++代码示例及去噪前后效果对比,为后续的BM3D算法去噪做铺垫。

    ISP(Image Signal Processor),图像信号处理器主要用来对前端图像传感器输出信号处理的单元,主要用于手机,监控摄像头等设备上。

    RAW DATA可以理解为:RAW图像就是CMOS或者CCD图像感应器将捕捉到的光源信号转化为数字信号的原始数据,是无损的,包含了物体原始的颜色信息等。RAW数据格式一般采用的是Bayer排列方式,通过滤波光片,产生彩色滤波阵列(CFA)鉴于人眼对绿色波段的色彩比较敏感,Bayer数据格式中包含了50%的绿色信息,以及各25%的红色和蓝色信息。

  Bayer排列格式有以下4种:

  1.| R | G |  2.| B | G |   3.| G | R |   4.| G | B |

    | G | B |    | G | R |     | B | G |     | R | G |

参考引用中仅提及了TFE(Thin Front End)和IFE(Image Front End),未提及OFE。不过,般在ISP(图像信号处理器)模块中,TFE、IFE有各自不同的功能和在处理流程中的位置。 TFE通常是前端较轻薄的处理单元,主要负责对输入的原始图像数据进行初步的处理和筛选,例如对图像传感器输出的数据进行初步的格式转换、数据过滤等操作,以减轻后续处理模块的负担。IFE则是图像前端处理模块,它会接收经过TFE初步处理后的数据,进行更深入的图像预处理操作,如、色彩校正、坏点校正等,为后续的图像算法处理提供更优质的图像数据。从处理流程上看,TFE处于更前端的位置,先对原始数据进行简单处理,然后将处理后的数据传递给IFE进行进步处理。 由于没有关于OFE的信息,难以准确阐述三者之间的具体关系。如果OFE存在,推测它可能处于TFE和IFE之后的某个处理环节,负责对经过IFE处理后的数据进行特定的操作,比如高级的图像增强、特效处理等。 ```python # 这里只是简单示意可能的处理流程 def tfe_process(raw_data): # TFE处理逻辑 processed_data_tfe = raw_data # 简化处理示意 return processed_data_tfe def ife_process(data_from_tfe): # IFE处理逻辑 processed_data_ife = data_from_tfe # 简化处理示意 return processed_data_ife # 假设存在OFE处理函数 def ofe_process(data_from_ife): # OFE处理逻辑 final_processed_data = data_from_ife # 简化处理示意 return final_processed_data # 模拟数据处理流程 raw_image_data = "raw data from sensor" tfe_output = tfe_process(raw_image_data) ife_output = ife_process(tfe_output) # 如果OFE存在 # final_output = ofe_process(ife_output) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值