不需要预训练模型的检测算法—DSOD

DSOD是一种无需预训练模型的深度学习对象检测算法,它在SSD基础上融合DenseNet思想,实现了从头开始训练的效果,与微调模型相媲美。该算法提出的原因包括预训练模型可能不适用于特定任务、结构固定不便修改以及预训练目标与检测任务不符。DSOD通过优化网络结构,减少了对大量预训练数据的依赖,并在VOC数据集上的实验表明,其性能优于直接使用VGG16训练的SSD,并接近微调后的SSD。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文:DSOD: Learning Deeply Supervised Object Detectors from Scratch
论文链接:https://arxiv.org/abs/1708.01241
caffe代码:https://github.com/szq0214/DSOD.

这是一篇ICCV2017的文章,我觉得非常有意思,因为DSOD(Deeply Supervised Object Detector)算法并不是在mAP上和其他检测算法做比较,看谁的算法更有效或者速度更快,而是从另一个角度切入说明fine-tune和直接训练检测模型的差异其实是可以减小的,也就是说训练一个检测模型可以不需要大量的数据和预训练好的模型。这篇文章的核心内容如果用一句话概括那就是:DSOD可以从0开始训练数据,不需要预训练模型,而且效果可以和fine-tune的模型媲美。

所以如果看到这里你也和我一样被这个算法所吸引,那么就继续往下看吧。

DSOD是在SSD算法的基础上进行改进的,可以简单理解为SSD+DenseNet=DSOD(作者文中也曾尝试从0开始训练region proposal based的检测算法比如Faster RCNN,R-FCN等,发现模型很难收敛;而proposal-free的检测算法

评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值