SSD系列算法优化及扩展
对于SSD,通常的优化策略,主要强调对主干网络的改进,和后续预测网络的改进(优化输入的feature map)。
DSSD:
- 2017年的CVPR,WeiLiu
- SSD算法对小目标不够鲁棒的最主要的原因是浅层feature map的表征能力不够强
- 加入上下文信息
- 更好的基础网络(ResNet)和Deconvolution层,skip连接来给浅层feature map更好的表征能力
反卷积结合之前的feature map通过相加来完成。由图可看出引入反卷积。通过反卷积可以提出更多的上下文信息,并结合上写文信息用于后续输入。以及后续Bounding box的位置回归和类别分类。
DSOD:
- 2017年的ICCV2017
- DSOD可以从0开始训练数据,不需要预训练模型,而且效果可以和fine-tune的模型媲美
- SSD + DenseNet = DSOD
- 可以从零开始训练得到一个好的目标检测网络么
- 如果可以,设计这样的网络有没有什么原则可以遵循
DSO