SSD系列算法原理讲解----(3)DSSD、DSOD算法(笔记)

本文介绍了SSD的优化策略,包括DSSD(Deconvolutional Single Shot Multibox Detector)和DSOD(Dense Single Shot Object Detector)。DSSD通过ResNet和反卷积层增强浅层特征表示,提高对小目标的检测。DSOD则能从零开始训练,采用DenseNet结构,克服预训练模型的局限性,实现优秀的目标检测性能。两算法都关注于特征图的融合和上下文信息的利用。
摘要由CSDN通过智能技术生成

SSD系列算法优化及扩展
在这里插入图片描述
对于SSD,通常的优化策略,主要强调对主干网络的改进,和后续预测网络的改进(优化输入的feature map)。
DSSD:

  • 2017年的CVPR,WeiLiu
  • SSD算法对小目标不够鲁棒的最主要的原因是浅层feature map的表征能力不够强
    • 加入上下文信息
    • 更好的基础网络(ResNet)和Deconvolution层,skip连接来给浅层feature map更好的表征能力

在这里插入图片描述
反卷积结合之前的feature map通过相加来完成。由图可看出引入反卷积。通过反卷积可以提出更多的上下文信息,并结合上写文信息用于后续输入。以及后续Bounding box的位置回归和类别分类。

DSOD:

  • 2017年的ICCV2017
  • DSOD可以从0开始训练数据,不需要预训练模型,而且效果可以和fine-tune的模型媲美
  • SSD + DenseNet = DSOD
    • 可以从零开始训练得到一个好的目标检测网络么
    • 如果可以,设计这样的网络有没有什么原则可以遵循

DSO

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值