数学——Lipschitz连续

本文介绍了Lipschitz连续性的定义及其数学表述。通过一个简单的不等式约束,我们能够理解函数变化率的上限,这有助于深入研究函数的一致性和局部特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Lipschitz(利普希茨)连续定义:
有函数f(x),如果存在一个常量K,使得对f(x)定义域上(可为实数也可以为复数)的任意两个值满足如下条件:

|f(x1)f(x2)||x1x2|K

那么称函数f(x)满足Lipschitz连续条件,并称Kf(x)的Lipschitz常数。
Lipschitz连续比一致连续要强。它限制了函数的局部变动幅度不能超过某常量。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值