李航《统计学习方法》第五章——用Python实现决策树(MNIST数据集)

相关文章:

看了决策树啊,就有那么几个疑问:

  1. 决策树是否只能处理特征值可数的情况
  2. 决策树是否无法处理不在训练集中出现的特征值

这几个疑问等以后有空的时候在慢慢探索吧!

决策树

按照传统不详述该算法,具体内容可以看《统计学习方法》第五章。

我实现的是ID3算法

这里只将书中算法贴出来

这里写图片描述
这里写图片描述

数据集

数据集没什么可以说的,和KNN那个博文用的是同样的数据集。

数据地址:https://github.com/WenDesi/lihang_book_algorithm/blob/master/data/train.csv

特征

将整个图作为特征,但需要二值化处理。

代码

计算信息增益的代码参考的是Avalon的博客

代码已放到Github上,代码注释中标识了书中伪代码的各步骤,因此还算易懂(吐槽一下,这代码相较之前的代码还真不太好写)

#encoding=utf-8

import cv2
import time
import logging
import numpy as np
im
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值