相关文章:
- 李航《统计学习方法》第二章——用Python实现感知器模型(MNIST数据集)
- 李航《统计学习方法》第三章——用Python实现KNN算法(MNIST数据集)
- 李航《统计学习方法》第四章——用Python实现朴素贝叶斯分类器(MNIST数据集)
- 李航《统计学习方法》第五章——用Python实现决策树(MNIST数据集)
- 李航《统计学习方法》第六章——用Python实现逻辑斯谛回归(MNIST数据集)
- 李航《统计学习方法》第六章——用Python实现最大熵模型(MNIST数据集)
- 李航《统计学习方法》第七章——用Python实现支持向量机模型(伪造数据集)>
- 李航《统计学习方法》第八章——用Python+Cpp实现AdaBoost算法(MNIST数据集)
隐马尔科夫模型有3个基本问题:
1. 概率计算问题(前向算法,后向算法)
2. 学习问题 (Baum-Welch算法)
3. 预测问题 (维特比算法)
我实现了Baum-Welch算法,且该算法也包含了前向算法与后向算法。
Baum-Welch算法
这里先贴上书中的算法
数据集
本来打算试一下用自己写的HMM跑一下中文分词,但很可惜,代码运行的比较慢。
所以改成 模拟 三角波 以及 正弦波
代码
代码已放到Github上,这边也贴出来
# encoding=utf8
import numpy as np
import csv
class HMM(object):
def __init__(self,N,M):
self.A = np.zeros((N,N)) # 状态转移概率矩阵
self.B = np.zeros((N,M)) # 观测概率矩阵
self.Pi = np.array([1.0/N]*N) # 初始状态概率矩阵
self.N = N