李航《统计学习方法》第六章——用Python实现逻辑斯谛回归(MNIST数据集)

相关文章:



第六章有两个算法,分别是逻辑斯谛回归与最大熵模型
逻辑斯谛回归可以看成最大熵模型的一种特例,最大熵模型的代码已经写好了,小数据集下测试正常,但放到MNIST数据集下会产生指数爆炸的问题,我这几天再看看如何解决吧!

逻辑斯谛回归

首先贴一下书上的算法

算法

这里写图片描述
可以看到这个算法与感知器算法贼像
感知器算法

当 Y = 1 时, wTx 尽量等于 +1
当 Y = 0 时, wTx 尽量等于 -1


而罗吉斯蒂算法

当 Y = 1 时, wT

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值