相关文章:
- 李航《统计学习方法》第二章——用Python实现感知器模型(MNIST数据集)
- 李航《统计学习方法》第三章——用Python实现KNN算法(MNIST数据集)
- 李航《统计学习方法》第四章——用Python实现朴素贝叶斯分类器(MNIST数据集)
- 李航《统计学习方法》第五章——用Python实现决策树(MNIST数据集)
- 李航《统计学习方法》第六章——用Python实现最大熵模型(MNIST数据集)
- 李航《统计学习方法》第七章——用Python实现支持向量机模型(伪造数据集)
- 李航《统计学习方法》第八章——用Python+Cpp实现AdaBoost算法(MNIST数据集)
- 李航《统计学习方法》第十章——用Python实现隐马尔科夫模型
第六章有两个算法,分别是逻辑斯谛回归与最大熵模型
逻辑斯谛回归可以看成最大熵模型的一种特例,最大熵模型的代码已经写好了,小数据集下测试正常,但放到MNIST数据集下会产生指数爆炸的问题,我这几天再看看如何解决吧!
逻辑斯谛回归
首先贴一下书上的算法
算法
可以看到这个算法与感知器算法贼像
感知器算法
当 Y = 1 时, wT⋅x 尽量等于 +1
当 Y = 0 时, wT⋅x 尽量等于 -1
而罗吉斯蒂算法
当 Y = 1 时, wT⋅