Softmax回归代码详解

本文深入解析Softmax回归,介绍了其在多分类问题中的应用,以及损失函数和导数的计算过程。通过示例展示了如何计算每个样本的类概率,并对损失函数的构造进行了详细说明,同时提出在矩阵运算中遇到的一个疑问,期待解答。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

Sfotmax回归分析是logistic回归分析在多个分类问题上面的发展。

Logistic回归中,训练集由m个标签样本组合构成: 


对于给定的测试输入  ,我们想用假设函数针对每一个类别j估算出概率值  p(y=j|x)。也就是说,我们想估计 x  的每一种分类结果出现的概率。,我们的假设函数将要输出一个   k维的向量(向量元素的和为1)来表示这   个估计的概率值。具体地说,我们的假设函数h(x)形式如下:


<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值