小样本大概率事件的正确处理方式 - 2. 结果分析

本文探讨了在处理小样本大概率事件时,概率约束和样本约束两种方法的优缺点。通过实例展示了1000次随机事件中,概率约束在样本数量增加时接近期望值,但小样本误差显著;而样本约束通过预设频次约束,能更快收敛到期望概率。策划在面对事件的间断性和连续性时,应考虑选用合适的约束策略。
摘要由CSDN通过智能技术生成

接上一篇 小样本大概率事件的正确处理方式 - 1. 概率的含义和误差产生的原因

首先,对于传统的“分别判断样本中每个事件是否发生”,我称之为概率约束;而“提前对样本内的事件发生频次进行预处理”,我称之为样本约束
然后,这次随机我使用三个互斥事件:从0,1,2三个数字中取一个,取出0的概率为20%,取出1的概率为30%,取出2的概率为50%。并且,我提高样本的大小到1000。
接着,为了让结果更加直观,我通过Excel做了一个表和曲线图。

对于概率约束,我的算法是这样的:(不需要解释吧)
这里写图片描述
对于样本约束,我的算法是这样的:(简单说明一下,这里是每10次随机作为一个小样本,约束里面的0出现2次,1出现3次,2出现5次,然后进行洗牌,这样重复了100次。由于是三个互斥事件,所以和上一篇文章中的01对立事件的算法有差别。)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值