接上一篇 小样本大概率事件的正确处理方式 - 1. 概率的含义和误差产生的原因
首先,对于传统的“分别判断样本中每个事件是否发生”,我称之为概率约束;而“提前对样本内的事件发生频次进行预处理”,我称之为样本约束。
然后,这次随机我使用三个互斥事件:从0,1,2三个数字中取一个,取出0的概率为20%,取出1的概率为30%,取出2的概率为50%。并且,我提高样本的大小到1000。
接着,为了让结果更加直观,我通过Excel做了一个表和曲线图。
对于概率约束,我的算法是这样的:(不需要解释吧)
对于样本约束,我的算法是这样的:(简单说明一下,这里是每10次随机作为一个小样本,约束里面的0出现2次,1出现3次,2出现5次,然后进行洗牌,这样重复了100次。由于是三个互斥事件,所以和上一篇文章中的01对立事件的算法有差别。)