在做多视觉的3D重建的时候,当找到多帧的匹配点和对应相机姿态时,我们需要求得的匹配点 x 和 x' 以及对应的 P 和 P’我
们得到 x = PX, x' = P’X。
得到了上述的两个等式,我们如何求方程组求解呢?
这里我们回到2D投影转换来说一说,对于2D平面上的两个对应点<x, x'>,我们可以找到一个单应矩阵H来建立二者的关系x' =
Hx。H是一个 3x3 的矩阵,所以 x 和 x‘ 是齐次坐标系下的2D坐标,他们的数量级不一样,那么 x' = Hx 不一定成立,但满足
叉积关系 x' x Hx = 0。很显然,x 和 x'
在同一个方向上,叉积为0)。此时,设
于是, x' x Hx = 0满足

本文介绍了3D重建中直接线性转换(DLT)算法的应用,通过2D投影转换解释了单应矩阵H如何连接对应点。探讨了求解AX=0的几种情况,包括4个匹配点时的唯一解,以及超定系统中通过最小奇异值求解。在多匹配点的三角化问题中,DLT同样适用,解为最小奇异值对应的奇异向量。
最低0.47元/天 解锁文章
1820

被折叠的 条评论
为什么被折叠?



