Triangulation求解3D坐标-直接线性转换(Direct Linear Transformation-DLT)算法

本文介绍了3D重建中直接线性转换(DLT)算法的应用,通过2D投影转换解释了单应矩阵H如何连接对应点。探讨了求解AX=0的几种情况,包括4个匹配点时的唯一解,以及超定系统中通过最小奇异值求解。在多匹配点的三角化问题中,DLT同样适用,解为最小奇异值对应的奇异向量。
摘要由CSDN通过智能技术生成

    在做多视觉的3D重建的时候,当找到多帧的匹配点和对应相机姿态时,我们需要求得的匹配点 x 和 x' 以及对应的 P 和 P’我

们得到 x = PX, x' = P’X。

    得到了上述的两个等式,我们如何求方程组求解呢?

    这里我们回到2D投影转换来说一说,对于2D平面上的两个对应点<x, x'>,我们可以找到一个单应矩阵H来建立二者的关系x'  =

 Hx。H是一个 3x3 的矩阵,所以 x 和 x‘ 是齐次坐标系下的2D坐标,他们的数量级不一样,那么 x'  = Hx 不一定成立,但满足

叉积关系 x' x Hx = 0。很显然,x 和 x'

    在同一个方向上,叉积为0)。此时,设

    于是, x' x Hx = 0满足

    

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值