002基于DETR的目标检测系统
模型
DETR是一种基于Transformer结构的目标检测模型,它与传统的目标检测方法不同之处在于,它采用端到端的方式来进行目标检测,即将目标检测的两个任务(目标位置回归和目标类别分类)合并为一个任务,通过一个Transformer网络将输入图像映射到输出的目标框和对应的类别。DETR模型的训练过程采用了"无需NMS"的策略,即在训练时不需要采用非极大值抑制算法来合并重叠的目标框,因此可以避免传统目标检测方法中NMS所带来的一些问题。DETR模型在多个目标检测数据集上取得了优秀的表现,具有较高的检测精度和较快的检测速度。
功能
PyThon实现的目标检测系统代码,基于深度学习框架PyTorch编程,采用DETR检测网络作为核心模型,可用于对车辆、行人、飞机、轮船、猫、狗等几十种类别进行检测和识别,并在QT界面中将结果可视化。代码可用于训练、验证和评估模型。在QT界面中,用户可以选择加载图像、摄像头和视频流三种模式作为模型输入。对模型训练完成后,用户可以根据自己数据集完成权重替换并可视化结果。用户还可以根据自己的需求,去更改QT界面的背景、按钮等,界面的操作和相关的代码都有详细的注释。<
该博客介绍了基于DETR的端到端目标检测模型,该模型在多个数据集上表现出色,采用PyTorch实现,结合PyQT界面进行可视化。用户可以加载图像、视频或摄像头输入进行检测,系统自动标注结果。提供的代码包含训练、预测和UI界面,适用于多种类别检测。
最低0.47元/天 解锁文章
1888

被折叠的 条评论
为什么被折叠?



