目标检测——【Transformer】DEFORMABLE DETR: DEFORMABLE TRANSFORMERS FOR END-TO-END OBJECT DETECTION

论文链接:https://arxiv.org/abs/2010.04159

文章侧重点

  1. 改进DERT中存在两个问题:
    • 收敛速度很慢的问题,究其原因是因为object query从零学起,且当前注意力机制对特征的计算是全局式逐像素计算,耗时。
    • DERT对小目标的检测性能不佳,因为通常小目标的检出需要高分辨率的特征图,但是DERT因为性能权衡,只用单一尺度检测。
  2. Deformable DERT借鉴Deformable Convolution的稀疏采样思想,将其扩展到Transformer中,并进行多尺度的检测。相比之下,Deformable Convolution是在单一尺度下找到一个关键点,而Deformable DERT可以在多尺度下找到多个关键点。
  3. Deformable DERT认为在特征图中包含目标相关的分布稀疏,故利用稀疏采用一些目标关键点特征生成新的特征向量。

Deformable Attention Module.

在这里插入图片描述
如图为单尺度的Deformable Attention Module示意图

  • 输入是Query Feature z q z_q zq、 预测目标中心位置的 p q p_q pq,目标特征
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值