【概率最小均方(PLMS)自适应滤波器】PLMS对高斯和非高斯噪声具有较强的鲁棒性(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

在最大后验估计框架下,本研究提出了概率最小均方(PLMS)自适应滤波器,用于从噪声数据中估计未知参数向量。PLMS将参数空间和信号空间相结合,将过程的概率分布的先验知识与信号中存在的证据相结合。利用核密度估计来估计先验分布,PLMS对高斯和非高斯噪声具有较强的鲁棒性。为了实现这一点,一些中间估计被缓冲,然后用于估计先验分布。尽管存在偏差补偿算法,但无需估计输入噪声方差。对PLMS进行了理论分析。系统识别和预测的模拟结果显示,PLMS在噪声稳态和非稳态环境中的性能可接受,而且优于偏差补偿和归一化的LMS算法。

📚2 运行结果

部分代码:

%% Initialization
N = 1;                         
M = 4;                        % Number of unknown parameters or Optimal Weight Vector Length
observations = 1000;          % Number of time observation
LMSiterations = observations; % Number of LMS Iteration
experiments = 100;            % Number of experiments for averaging over on.
Wo = ones(M,1)*sqrt(M);       % Optimal Weight Vector
stationary = 1;               % Choose 1 for stationary model, 0 for non-stationary model
N0 = .5;                      % Input noise variance
i = 1;
leg=[];
Xbar = [];
ix = 1:observations;
zinp = [];
for N1 = [.12 .38 1.3 ] %output noise variance
    display(strcat('N1= ', num2str(N1),'...'))
    for experiment = 1 : experiments
        %% Generate Input Signal and Desired Output
        inputNoise  = 'none';
        outputNoise = 'gaussian';
        N0 = N1;
        [X,d,w,zinp,zout,snr_inp] = createData(Wo,N,M,observations,N0,N1,stationary,inputNoise,outputNoise);
        snr_out = 10*log10(var(d-zout)/var(zout));
        %% PLMS Adaption
        muN =0.1;     % Step size
        bufferL = 30; % Buffer length
        [MSD(experiment,:),W,er(experiment,:)] = PLMS(X,d,LMSiterations,N,M,w,muN,bufferL);
        %% Performance Analysis of PLMS
        for j = 1 : observations
            nrmW(j) = norm(W(:,j)-Wo);
        end
        p = 1;
        for j = observations:-1:bufferL+1
            b(p) = sum(nrmW(j-bufferL:j-1))/nrmW(j);
            b(p) = b(p);
            p = p +1;
        end
        beta = mean(b);
        R = corr(reshape(X(1,:,:),M,observations)');
        I = eye(M);
        I2 = kron(I,I);
        f = I2-kron(I,muN*(I+R))-kron(muN*(I+R),I);
        q1 = muN*beta/bufferL;
        MSDT(experiment) = muN^2*N1^2*R(:)'*inv(I2-f-q1*I2)*I(:);%MSD Theory
    end
    %% Expectation over different experiments
    MeanMSDMS = mean(MSD);
    MeanMSDTheory = 10*log10(mean(MSDT)*ones(1,observations));
    
    %% Plot Results
    hold on
    plot(ix,10*log10(MeanMSDMS),clr1{i});
    leg{end+1} = strcat('PLMS, SNR_v=',num2str(floor(snr_out)));
    plot(ix,MeanMSDTheory,clr2{i})
    leg{end+1} = strcat('PLMS, SNR_v=',num2str(floor(snr_out)),'- Theory');
    i=i+1;
end
legend(leg,'Orientation','vertical','FontSize',7);
axis square
grid on
box on
xlabel('Iteration','fontsize',10)
ylabel('MSD(dB)','fontsize',10);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Estimation of Weights, Using PLMS Algorithm                    %
                              %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [MSDSingle,W,er] = PLMS(X,d,LMSiterations,N,M,Wo,muN,bufferL)
W = zeros(M,1);
bufferW = zeros(M,bufferL);
h = 1;% .5;
%% Non-cooperative LMS
for n = 1 : LMSiterations
    for m = 1 : N
        ebar = [d(m,n)-X(m,:,n)*W(:,n)]*X(m,:,n)';
        WbarNodesingle(m,n) = norm(Wo(:,n)-W(:,n));
        %         WbarNodesingle(m,n) = norm(Wo-W(:,n));
        er2(m,n) = (d(m,n)-X(m,:,n)*W(:,n))^2;
        WBni = zeros(M,1); %similarity of wn and buffered wi
        sumB = 0; %normalizing factor
        for i = 1 : bufferL
            simWni = exp(-(bufferW(:,i)-W(:,n))'*(bufferW(:,i)-W(:,n))/h);
            weightedWi(:,i) = simWni*bufferW(:,i);
            sumB = sumB + simWni;
        end
        sumWi = sum(weightedWi./sumB,2);
        W(:,n+1) = W(:,n)+ muN*(ebar + sumWi - W(:,n));%gradiant ascend
        bufferW = add2buffer(bufferW,W(:,n+1));
    end
    %% Error analysis of Network
    MSDSingle(n)=norm(WbarNodesingle(:,n))^2; % Scalar of error
end
er = mean(er2,1);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张以森.最小均方自适应滤波器[J].系统工程与电子技术, 1982(04):41-49.DOI:CNKI:SUN:XTYD.0.1982-04-004.

[2]王瑾,黄德修,元秀华.基于最小均方自适应滤波器的无线光通信接收性能分析[J].中国激光, 2006, 33(10):5.DOI:10.3321/j.issn:0258-7025.2006.10.017.

[3]王秋莎,张峥,王磊,等.最小均方自适应滤波器设计及性能影响因素分析[J].河北电力技术, 2023.

🌈4 Matlab代码实现

  • 32
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
自适应滤波器是一种可以根据输入信号的特性来自动调整滤波器参数的方法,最小均方算法是其中常用的一种实现方式。在Python中,我们可以使用以下步骤实现最小均方自适应滤波器: 1. 首先,我们需要导入所需的库。我们可以使用NumPy库进行数组和矩阵运算,使用Matplotlib库进行结果可视化。 ```python import numpy as np import matplotlib.pyplot as plt ``` 2. 定义输入信号和期望输出信号。这些信号可以是任意长度的数字序列。 ```python input_signal = np.array([1, 2, 3, 4, 5, 6]) desired_output = np.array([2, 4, 6, 8, 10, 12]) ``` 3. 初始化自适应滤波器的参数。我们需要定义滤波器的长度、步长和初始权重。 ```python filter_length = 3 step_size = 0.01 weights = np.zeros(filter_length) ``` 4. 使用最小均方算法迭代地更新滤波器的权重。 ```python for i in range(filter_length, len(input_signal)): current_input = input_signal[i-filter_length:i] error = desired_output[i] - np.dot(weights, current_input) weights = weights + step_size * error * current_input ``` 5. 绘制实际输出和期望输出的对比图。 ```python output_signal = np.zeros(len(input_signal)) for i in range(filter_length, len(input_signal)): current_input = input_signal[i-filter_length:i] output_signal[i] = np.dot(weights, current_input) plt.plot(desired_output, label='Desired Output') plt.plot(output_signal, label='Adaptive Filter Output') plt.legend() plt.show() ``` 通过以上步骤,我们就可以实现一个简单的最小均方自适应滤波器,并将其应用于输入信号。根据输入信号的特性,滤波器会自动调整参数以逼近期望输出信号。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值