【风电功率预测】【多变量输入单步预测】基于BiTCN-LSTM的风电功率预测研究(Matlab代码实现)

                   💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、BiTCN-LSTM模型概述

三、基于BiTCN-LSTM的风电功率预测模型构建

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于BiTCN-LSTM(双向时间卷积网络-长短期记忆网络)的风电功率预测研究,结合了BiTCN在特征提取上的优势和LSTM在处理时间序列数据长期依赖关系上的能力,为风电功率预测提供了一种有效的解决方案。以下是对该研究的详细分析:

一、研究背景与意义

风力发电作为可再生能源的重要组成部分,具有无污染、充分利用自然资源等优势,逐渐成为全球能源结构调整和低碳经济发展的重要方向。然而,由于风力发电的不可控性和风速的不稳定性,风力发电机组的功率预测成为提高风电运行效率和风电场运营管理的关键问题之一。准确的风电功率预测有助于风电场运营商制定合理的发电计划和出售电量计划,优化风电场的功率管理和经济效益,同时也有助于电力系统的稳定运行和电力市场的合理调度。

二、BiTCN-LSTM模型概述

BiTCN(双向时间卷积网络)

  • 由两个方向的时间卷积层组成,分别用于提取时间序列数据的前向和后向特征。
  • 每个时间卷积层包含多个卷积核,负责提取时间序列数据中特定时间尺度的特征。
  • 通过双向卷积,可以更全面地提取时间序列数据的特征信息。

LSTM(长短期记忆网络)

  • 是一种特殊的循环神经网络(RNN),通过引入遗忘门、输入门和输出门三个门结构,解决了传统RNN中的“长期依赖”问题。
  • 能够有效捕捉时间序列数据中的长期依赖关系和时序特征。

BiTCN-LSTM模型

  • 结合了BiTCN和LSTM的优势,首先通过BiTCN提取时间序列数据中的前向和后向特征,然后将这些特征输入到LSTM中,进一步学习时间序列的长期依赖关系。
  • 该模型能够更全面地捕捉风电功率预测中的相关信息,提高预测精度。

三、基于BiTCN-LSTM的风电功率预测模型构建

  1. 数据收集与预处理
    • 收集风电场的历史风速、风向、温度等气象数据以及相应的风电发电量数据。
    • 对数据进行清洗、去噪、插值等预处理操作,以消除异常值和缺失值对预测结果的影响。
    • 对数据进行归一化处理,以消除不同量纲对模型训练的影响。
  2. 特征选择
    • 根据风电功率的变化特性,选择对预测结果影响较大的特征作为模型的输入。常用的特征包括历史风电功率数据、历史风速数据、风向数据、温度数据等。
  3. 模型构建与训练
    • 构建BiTCN-LSTM模型,将预处理后的数据划分为训练集和测试集。
    • 使用训练集数据训练模型,通过调整模型的参数(如隐藏层单元数、学习率、批处理大小等)来优化模型的预测性能。
    • 采用适当的损失函数(如均方误差MSE)和优化算法(如随机梯度下降SGD)来评估和调整模型。
  4. 模型评估
    • 使用测试集数据对训练好的BiTCN-LSTM模型进行评估,计算预测误差等指标以评估模型的预测性能。

📚2 运行结果

部分代码:

% 此函数可以实现多变量多步输入,和多变量单步输入
% 多变量多步输入时,将n_out设置成大于1的多步预测
% 多变量单步输入时,将n_out设置为1,表示预测未来一步。
% # 关于此函数怎么用,下面详细举例介绍:
% # 构造数据,这个函数可以实现单输入单输出,单输入多输出,多输入单输出,和多输入多输出。
% # 举个例子:
% # 假如原始数据为,其中务必使得数据前n-1列都为特征,最后一列为输出
% # [0.74    0.8    0.23 750.75
% # 0.74 0.87 0.15 716.94
% # 0.74 0.87 0.15 712.77
% # 0.74 0.8 0.15 684.86
% # 0.74 0.8 0.15 728.79
% # 0.72 0.87 0.08 742.81
% # 0.71 0.99 0.16 751.3]

% #(多输入多输出为例),假如n_in = 2,n_out=2,scroll_window=1
% # 输入前2行数据的特征,预测未来2个时刻的数据,滑动步长为1。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77 684.86
% # 0.74 0.87 0.15 716.94 0.74 0.87    0.15 712.77  684.86 728.79
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79 742.81】

% # 假如n_in = 2,n_out=1,scroll_window=2
% # 输入前2行数据的特征,预测未来1个时刻的数据,滑动步长为2。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77
% # 0.74 0.87    0.15 712.77  0.74 0.8 0.15 684.86 728.79
% # 0.74 0.8 0.15 728.79 0.72    0.87 0.08 742.81 751.3】


function  res = data_collation(values, n_in, n_out, or_dim, scroll_window, num_samples)
    for i = 1:num_samples
        h1 = values(1+scroll_window*(i-1): scroll_window*(i-1)+n_in,1:or_dim);
        res{i,1}= h1;
        h2 = values(scroll_window*(i-1)+n_in+1 : scroll_window*(i-1)+n_in+n_out,end);
        res{i,2} = h2;
      
    end
 end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.

[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值