小白也可以轻松学大模型 RAG:FlagEmbedding 重排序

RAG模型已经取得了显著的进展,但其性能仍然受到排序质量的限制。在实践中,我们发现重排序技术能够有效地改善排序的效果,从而进一步提升RAG模型在问答任务中的表现。

重排序的作用

与传统的嵌入模型不同,重排序器(reranker)直接以问题和文档作为输入,并输出相似度,而不是嵌入。通过将查询和文段输入到重排序器中,您可以获得相关性分数。重排序器基于交叉熵损失进行优化,因此相关性分数不限于特定范围。

unsetunsetFlagEmbeddingunsetunset

https://github.com/FlagOpen/FlagEmbedding

在FlagEmbedding中,重点放在了检索增强的语言模型上,目前包括以下项目:

  • 语言模型微调(Fine-tuning of LM)

  • 嵌入模型(Embedding Model)

  • 重排序模型(Reranker Model)

pip install -U FlagEmbedding

如下是一个rerank的例子,获取相关性分数(较高的分数表示更高的相关性):

from FlagEmbedding import FlagReranker

# 初始化重排序器,您可以选择是否启用混合精度以加快计算速度
reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True)

# 单个查询和文段的相关性分数
score = reranker.compute_score(['query', 'passage'])
print(score)

# 批量查询和文段的相关性分数
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
print(scores)

也可以直接通过transformers使用:

import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large')
model.eval()

pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
with torch.no_grad():
    inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
    scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
    print(scores)

unsetunsetReRank原理unsetunset

跨编码器(Cross-encoder)采用全注意力机制对输入文本对进行完整关注,相比嵌入模型(例如双编码器),其精度更高,但也更耗时。因此,它可以用于重新排列嵌入模型返回的前k个文档,从而提高排序的准确性。

跨编码器的引入为多语言文本检索任务带来了更加准确和高效的解决方案。通过在全文本对上进行完整关注,跨编码器能够更好地理解语义信息,从而提高了排序的精度。

基础ReRank模型

基础的ReRank模型本质是一个序列分类模型,旨在对输入的文本对进行分类。它基于预训练的Transformer架构,通常是BERT、RoBERTa或类似的模型,其中编码器部分对输入文本进行编码,而解码器部分则用于分类任务。

from FlagEmbedding import FlagReranker
reranker = FlagReranker('BAAI/bge-reranker-v2-m3', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation

score = reranker.compute_score(['query', 'passage'])
print(score) # -5.65234375

# You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
score = reranker.compute_score(['query', 'passage'], normalize=True)
print(score) # 0.003497010252573502

scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
print(scores) # [-8.1875, 5.26171875]

# You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], normalize=True)
print(scores) # [0.00027803096387751553, 0.9948403768236574]

LLM-based reranker

LLM-based reranker的思路,其主要思想是利用预训练的语言模型来对查询和文档进行编码,并根据编码结果生成相应的分数,以评估它们之间的相关性。

预设定的提示词如下:

Given a query A and a passage B, determine whether the passage contains an answer to the query by providing a prediction of either ‘Yes’ or ‘No’.

from FlagEmbedding import FlagLLMReranker
reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
# reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_bf16=True) # You can also set use_bf16=True to speed up computation with a slight performance degradation

score = reranker.compute_score(['query', 'passage'])
print(score)

scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
print(scores)

LLM-based layerwise reranker

based layerwise reranker是一种基于语言模型的重排序器,它允许您选择特定层的输出来计算分数,以加速推断过程并适应多语言环境。

from FlagEmbedding import LayerWiseFlagLLMReranker
reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
# reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_bf16=True) # You can also set use_bf16=True to speed up computation with a slight performance degradation

score = reranker.compute_score(['query', 'passage'], cutoff_layers=[28]) # Adjusting 'cutoff_layers' to pick which layers are used for computing the score.
print(score)

scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], cutoff_layers=[28])
print(scores)

unsetunset模型精度对比unsetunset

图片

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了算法岗技术与面试交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2060。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2060,备注:技术交流

用通俗易懂方式讲解系列

  • 26
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
模型+RAG(Retrieval-Augmented Generation)是一种结合了检索和生成的方法,用于实现数据采集。具体步骤如下: 1. 数据收集:首先需要收集大量的原始数据,可以是文本、图像、音频等形式的数据。这些数据可以从互联网、数据库、文档等多个渠道获取。 2. 数据预处理:对收集到的原始数据进行预处理,包括数据清洗、去、标注等操作。这一步骤旨在提高数据的质量和准确性,为后续的模型训练做准备。 3. 模型训练:使用大模型进行训练,可以选择使用预训练的语言模型(如GPT)或自定义的模型。在训练过程中,可以采用生成式对抗网络(GAN)等方法来增强模型的生成能力。 4. 检索模块构建:为了提高生成结果的准确性和相关性,需要构建一个检索模块。该模块可以使用传统的信息检索技术,如倒排索引、向量检索等,也可以使用深度学习方法,如BERT、Dense Retrieval等。 5. 数据采集:利用构建好的检索模块,对用户提出的问题或需求进行检索,获取与之相关的数据。可以根据检索结果的相关性进行排序,选择最相关的数据进行生成。 6. 数据生成:基于检索到的数据,使用大模型进行生成。可以采用生成式模型,根据检索到的数据进行文本、图像等内容的生成。生成的结果可以根据需求进行进一步的处理和优化。 7. 结果评估:对生成的结果进行评估,可以使用人工评估或自动评估的方式。评估指标可以包括生成结果的准确性、流畅性、相关性等。 8. 迭代优化:根据评估结果,对模型和检索模块进行优化和调整。可以通过增加训练数据、调整模型参数、改进检索算法等方式来提升系统的性能。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值