机器学习导入波斯顿房价数据集的三种方法

1. 直接通过sklearn库进行数据导入

from sklearn.datasets import load_boston  

 这种方法在比较新的版本中会被移除掉,下图是1.2.2的sklearn作为演示,导入失败:
在这里插入图片描述

 可通过使用旧版python解释器来导入,下图是python3.6,,sklearn版本是0.24.1,成功导入:
在这里插入图片描述

2.导入函数 fetch_openml

from sklearn.datasets import fetch_openml
boston = fetch_openml(name="boston", version=1, as_frame=True)
boston['data']

在这里插入图片描述

3.通过pandas导入

 从第一种方法的报错中找到数据的地址:
  data_url = “http://lib.stat.cmu.edu/datasets/boston”

import pandas as pd 
import numpy as np
data_url = "http://lib.stat.cmu.edu/datasets/boston"

# 通过sep指定空格作为分隔符
# skiprows = 22 表示跳过前22行
# header=None表示不将第一行作为列名
raw_df = pd.read_csv(data_url, sep='\s+', skiprows=22, header=None)

# 将原始数据转换为Numpy数组
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])

# 提取目标值
target = raw_df.values[1::2, 2]

data

在这里插入图片描述

波士顿房价预测是一个经典的机器学习问题,我们可以使用RStudio来对相关数据进行数据探索和预测建模。 首先,我们可以将波士顿房价数据集导入到RStudio中,并查看数据的基本信息,比如数据集的大小、特征的数量等。这可以帮助我们对数据有一个初步的了解。 接下来,我们可以使用各种数据可视化技术来探索数据的分布和相关性。例如,我们可以创建直方图来查看房价的分布情况,使用散点图来观察房价与其他特征(如房间数量、犯罪率等)之间的关系。这些可视化工具有助于我们发现数据中的模式和趋势。 在数据探索的过程中,我们还可以通过计算各种统计量来了解数据的中心趋势、离散程度和相关性。例如,我们可以计算房价的平均值、中位数和标准差,以及各个特征之间的相关系数。这些统计量可以帮助我们更加深入地理解数据集中的关系和趋势。 最后,我们可以使用机器学习算法来建立房价预测模型。常见的算法包括线性回归、决策树、随机森林等。我们可以使用RStudio的机器学习包(如caret包)来训练和评估这些模型,并选择性能最好的模型进行预测。 在整个实践过程中,RStudio提供了丰富的工具和资源来辅助我们进行数据探索和预测建模。它可以帮助我们更加高效地分析数据、创建可视化图表、计算统计量,并且使用机器学习算法进行预测建模。通过这样的实践,我们可以更好地理解波士顿房价数据集,并建立准确的预测模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值