0成本5分钟!利用开源大模型搭建本地专属AI知识库

你一定经历过各种通用大模型一本正经胡说八道的时候吧,AI一通丝滑输出让人真假难辨,防不胜防。这种情况被称为AI幻觉

大模型产生幻觉不幸“翻车”的原因很大程度上是“先天不足”,例如训练时来自特定领域的训练数据就比较缺失或存在偏差等。对于企业,AI的幻觉已经成为阻碍其落地应用的严重缺陷。

我们自然想让一些企业内部私有数据也进入到大模型推理分析的过程,让其更好服务于日常业务,但出于信息安全等考量,私有数据显然不可随意上传到第三方平台。针对这种情况,将企业内部知识库和大模型连接起来构建一个本地私有化的专属的AI知识库不失为一种简易的解决方案。

构建本地私有知识库的基本步骤

1. 整理出需要模型分析的私有数据,比如文本数据(doc、csv、ppt…),音视频数据,甚至一些网址链接。

2. 通过一个嵌入模型将这些信息转换成模型能够看得懂的向量信息,即信息的向量化。

3. 将向量化的信息存储到专属的向量数据库中,构建本地知识库。

这个时候当用户提问时,我们引入的通用大模型将会结合本地知识库中所存在的信息有针对性的回答,甚至也可以专门分析本地知识库中的信息来输出。

本地AI知识库的安装和配置

AnythingLLM 是一款构建本地知识库的工具,能够直接读取文档并处理大量信息资源,包括文档上传、自动抓取在线文档,然后进行文本的自动分割、向量化处理,以及实现本地检索增强生成(RAG)等功能。

AnythingLLM支持几乎所有的主流大模型和多种文档类型,可定制化程度高,安装设置简单,适用于MacOS、Linux和Windows平台,也可以使用Docker安装。AnythingLLM默认通过Ollama来使用LLama2 7B、Mistral 7B、Gemma 2B等模型,也可以调用OpenAI、Gemini、Mistral等大模型的API服务。除AnythingLLM以外,近期较为热门的知识库工具还有MaxKB、RAGFlow、FastGPT、Dify 、Open WebUI 等。

01

下载并安装Ollama(用于下载各类通用大模型)

访问 https://ollama.com/download,选择所需版本

02

安装大模型和嵌入模型

我们示例中选择的是通义千问大模型和M3e嵌入模型,大家也可以根据自己的需要选择其他模型下载。Ollama支持的模型列表及资源占用情况可从官网查阅:https://ollama.com/library

03

下载并安装AnythingLLM

访问 https://anythingllm.com/download 选择对应版本

04

配置AnythingLLM

  • 配置参数选择Ollama

  • Embedder选择M3e

  • 向量数据库选择LanceDB(默认)

上传私有数据并验证AI问答效果

至此,一个AI驱动的本地私有知识库的基本架构已经搭建完成。接下来我们需要创建工作区,上传各种文档格式的企业私有数据,验证是否能正常工作。

01

csv表格

随意生成一份原始数据如下:

对话结果(对数据进行排序和筛选):

02

docx文档

原始数据是星融元AsterNOS网络操作系统的文档,其中涉及到高可靠特性的部分如下。

对话结果:

03

网址

星融元CX-N超低时延交换机在官网的产品详情页,涉及到产品特性的片段如下。

对话结果:

可以看到,这个本地AI知识库已经在利用我们上传的私有文本数据回答问题了,下一步您需要持续不断地丰富私有内容,让其更加智能、可靠;大型企业则更需要对其“悉心调教”,例如充分考虑本地AI推理系统的并发接入性能,在网络基础设施上进行相应调整和升级,也要关注和其他内部工具的集成。

那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码免费获取~

篇幅有限,部分资料如下:

👉LLM大模型学习指南+路线汇总👈

💥大模型入门要点,扫盲必看!
在这里插入图片描述
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。

路线图很大就不一一展示了 (文末领取)
在这里插入图片描述

👉大模型入门实战训练👈

💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉国内企业大模型落地应用案例👈

💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
在这里插入图片描述

👉GitHub海量高星开源项目👈

💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!
在这里插入图片描述

👉LLM大模型学习视频👈

💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
在这里插入图片描述

👉640份大模型行业报告(持续更新)👈

💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

👉获取方式:

这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

<think>好的,用户想寻找适合搭建本地知识库的最佳模型推荐。首先,我需要理解用户的具体需求。他们可能是在企业环境中需要处理私域数据,或者是个体开发者希望构建个性化的知识库。根据引用内容,特别是引用[1]和[4],构建本地知识库需要考虑数据准备、模型选择以及RAG(检索增强生成)的应用。 接下来,用户提到的“最佳模型”可能涉及多个方面,比如模型的大小、计算资源需求、处理中文的能力以及是否支持本地部署。引用[3]和[5]提到了一些大模型的学习资源和实战案例,这可能意味着用户希望了解当前流行的模型选项。 首先,我应该考虑适合本地部署的模型。由于本地资源可能有限,模型的大小和效率是关键。例如,Llama 2和ChatGLM-6B都是开源的,支持本地部署,并且有较好的中文处理能力。Alpaca和BGE这类模型可能在特定任务如嵌入生成上表现更好,适合作为RAG中的检索模块。 然后,需要结合RAG框架。引用[1]和[4]提到RAG可以增强大模型在私域任务中的处理能力,所以推荐支持RAG的模型组合,比如使用BGE生成嵌入,再结合Llama 2进行生成。同时,数据预处理和清洗也是关键步骤,确保模型能够有效利用本地数据。 另外,用户可能需要考虑模型的可扩展性和社区支持。Llama 2和ChatGLM都有活跃的社区,这对于解决问题和获取资源非常重要。而像MOSS和Baichuan2这样的国产模型可能在中文支持上更有优势,适合国内用户。 最后,应该提醒用户根据具体需求选择,比如数据规模、计算资源、是否需要微调等。引用[5]提供的学习资源包可能对用户进一步学习模型部署和优化有帮助。总结来说,最佳模型的选择取决于多个因素,需要综合评估后推荐合适的选项。</think>### 最佳本地知识库模型推荐 搭建本地知识库需综合考虑**模型性能**、**计算资源需求**、**中文支持能力**和**本地化部署灵活性**。以下是推荐模型及选择依据: --- #### 1. **Llama 2 系列** - **特点**:Meta推出的开源模型,支持7B/13B/70B参数版本,适合本地部署[^1]。 - **优势**: - 支持中英文混合任务,社区生态完善(如Chinese-LLaMA-Alpaca中文优化版)[^3] - 可通过量化技术(如GGUF格式)降低显存需求 - **适用场景**:中小规模知识库(需搭配RAG框架增强检索能力)[^4] --- #### 2. **ChatGLM-6B/12B** - **特点**:清华智谱AI开发的双语模型,6B版本仅需8GB显存 - **优势**: - 原生支持中文,语义理解准确 - 支持LoRA微调,适配企业私有数据[^4] - **适用场景**:FAQ问答系统、内部文档检索 --- #### 3. **BGE(BAAI General Embedding)** - **特点**:专为检索优化的嵌入模型,支持中英文 - **优势**: - 在RAG架构中表现优异,适合构建知识索引 - 轻量级,可部署在CPU环境 - **典型用法**:与生成模型(如Llama 2)组成RAG系统,提升知识库准确率[^1] --- #### 4. **Alpaca-LoRA** - **特点**:基于LoRA微调技术的轻量化模型 - **优势**: - 仅需24GB显存即可运行7B模型 - 支持快速迭代企业专属知识库[^2] - **适用场景**:快速验证场景或资源有限环境 --- #### 5. **国产模型推荐** - **MOSS-16B**(复旦大学):中文代码混合任务表现突出 - **Baichuan2-7B/13B**:通过Apache 2.0协议开源,支持商业应用[^5] --- ### 选型建议表 | 需求场景 | 推荐模型 | 关键技术支持 | |---------------------------|------------------------|----------------------| | 中小规模中文知识库 | ChatGLM-6B + BGE | RAG框架 | | 低成本快速部署 | Alpaca-LoRA 7B | 量化压缩 | | 大规模多模态知识库 | Llama 2 70B + BGE | 分布式推理[^4] | | 商业级应用 | Baichuan2-13B | 微调API支持 | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值