近日,HuggingFace开源了低成本AI机器人LeRobot,并指导大家从头开始构建AI控制的机器人,包括组装、配置到训练控制机器人的神经网络。
当前的AI机器人,已经可以上蹿下跳后空翻、再接闪电五连鞭,代替人类承担各种工作。
哪怕是当大号手办,咱也想整一个玩玩。
但无奈目前大多公司还在研发阶段,少数能量产的又有亿点小贵。
当然了,小编相信AI和机器人最终会走进千家万户。
而现在,我们可以玩到一个低成本的解决方案——LeRobot:
——不知诸位可还记得「炒菜大师」ALOHA?
而这个LeRobot,就是我们自己可以拥有的ALOHA,能够模仿人类完成一些简单的任务。
单个机械臂的成本在200美元左右,而后端的模型训练在自己的笔记本上就可以搞定。
官方开源了全部的硬件和软件,包括训练和控制程序、AI模型、SolidWorks文件等。
我们可以从零组装出机械臂,并发挥想象教会它一些事情。
LeRobot项目由前特斯拉工程师Remi Cadene(现在是HuggingFace的principal research scientist)所领导,并给出了一份详细的指南,
包括如何从头开始构建AI控制的机器人,——组装、配置,以及训练控制机器人的神经网络。
项目基于开源的Koch v1.1机器人套件(也可以是别的硬件或者虚拟平台),包含两个六电机的机械臂,可使用一个或多个摄像头作为视觉传感器。
项目地址:https://github.com/huggingface/lerobot
LeRobot还计划在未来开发更具性价比的Moss v1版本,定价仅为150美元。
连𝐌𝐨𝐛𝐢𝐥𝐞 𝐀𝐋𝐎𝐇𝐀的作者也表示“Amazing”:
对于AI机器人,专业人士认为它将成为这个时代的PC:
我一直在等待两个平台的转变:
-相当于早期PC的AR/VR
-相当于早期个人电脑的机器人
而大多数网友则更加直接:这是我过去十年来一直想要的机械手,必须得到它!
说到开源的力量,项目刚刚发布就有网友玩了起来:
因为他表示自己的视频没有加速,所以小编也没给他加速。
目前的HuggingFace上给出了四种模型,以及98个数据集,开发者还可以选择在训练过程中上传自己的数据集。
制作自己的AI Robot
LeRobot目前使用的机械臂来源于Alexander Koch在几个月前开源的项目:
下图是前辈的样子,总体的硬件差别不大,但为了方便大家复刻和使用,LeRobot做了一些改进。
Koch v1.1拿掉了之前硬件模型中一些干扰材料,让尺寸标准化,并为引导臂添加了一个平台,允许从动臂从地面拾取物体。
通过更换直流转换器,Koch v1.1无需使用烙铁进行组装,也无需手动调节电压转换器。
项目还添加了机械臂的SolidWorks模型、接线图以及装配视频。
材料清单
以引导臂(Leader Arm)为例,
下表是需要购买的部件,主要的开销在6个舵机上面,剩下的包括电机驱动板、固定装置、电源、杜邦线之类的。
而手臂结构的塑料片,则需要根据给出的文件通过3D打印获得。
实际上对于相关爱好者来说,这些零件基本都能凑出来,而且咱们国内买这些东西也要便宜得多。
另外,如果需要平替或者升级伺服电机的话,记得修改控制程序。
他这里给出的两种电机扭矩都不大,但精度和转速倒是都挺高,不知道替换后会有多大影响,感兴趣的小伙伴不妨一试。
配置和校准
首先安装Koch v1.1所需的依赖:
pip install -e “.[koch]”
然后按照接线图给驱动板和电机供电,USB连接到电脑:
注意从动臂这边有俩大一点的电机需要12V供电,以及USB不能作为电源。
通过以下命令进行电机的配置和校准:
python lerobot/scripts/control_robot.py teleoperate \
–robot-path lerobot/configs/robot/koch.yaml \
–robot-overrides ‘~cameras’ # do not instantiate the cameras
程序实例化一个类来调用SDK操作电机(port改为自己设备上检测到的端口):
DynamixelMotorsBus(port=“/dev/tty.usbmodem575E0031751”)
接下来配置每个电机的索引(相当于在总线上控制时的地址):
follower_arm = DynamixelMotorsBus(
port=follower_port,
motors={
# name: (index, model)“shoulder_pan”: (1, “xl430-w250”),
“shoulder_lift”: (2, “xl430-w250”),
“elbow_flex”: (3, “xl330-m288”),
“wrist_flex”: (4, “xl330-m288”),
“wrist_roll”: (5, “xl330-m288”),
“gripper”: (6, “xl330-m288”),
},
)
DynamixelMotorsBus会自动检测当前电机索引,如果电机中保存的索引与配置文件中不匹配,会触发一个配置过程,需要拔掉电机的电源,按顺序重新连接电机。
读写测试
运行以下代码:
leader_pos = leader_arm.read(“Present_Position”)
follower_pos = follower_arm.read(“Present_Position”)
print(leader_pos)
print(follower_pos)
配置成功后可以得到所有12个电机的当前位置:
array([2054, 523, 3071, 1831, 3049, 2441], dtype=int32)
array([2003, 1601, 56, 2152, 3101, 2283], dtype=int32)
校准
手动调节机械臂到几个固定的位置,相当于给电机一个相对的归零位置,同时也保证引导臂和从动臂的静止位置大致对齐。
通过校准程序之后,这几个位置会被写入配置文件,作为之后运行的基准。
——温馨提示:记得不要在Torque_Enable的情况下硬掰。
开玩!
准备就绪,下面可以开始控制机械臂了,比如让从动臂模仿引导臂,设置采样频率200Hz,操作30秒:
import tqdm
seconds = 30
frequency = 200
for _ in tqdm.tqdm(range(seconds*frequency)):
leader_pos = robot.leader_arms[“main”].read(“Present_Position”)
robot.follower_arms[“main”].write(“Goal_Position”, leader_pos)
——是不是很简单?
那么由此可知,训练机械臂模仿人类的原理就是,在从动臂模仿引导臂的同时,加上一个摄像头的实时画面,
在模仿(训练)的过程中,模型收集了手臂位置和对应的图像数据,之后(推理)就可以根据当前摄像头看到的画面来预测各个电机需要到达的角度。
小编翻了一下项目的代码,发现这个「模仿游戏」所用的AI模型居然就是ALOHA用的Action Chunking with Transformers (ACT)。
论文地址:https://arxiv.org/pdf/2304.13705
除了ACT,你也可以使用或者训练自己的模型,可以改成ALOHA那样的双臂模式,或者在虚拟环境中进行训练和验证。
加入摄像头
项目使用opencv2库来操作camera,以下代码同时配置了机械臂和摄像头:
robot = KochRobot(
leader_arms={“main”: leader_arm},
follower_arms={“main”: follower_arm},
calibration_path=“.cache/calibration/koch.pkl”,
cameras={
“laptop”: OpenCVCamera(0, fps=30, width=640, height=480),
“phone”: OpenCVCamera(1, fps=30, width=640, height=480),
},
)
robot.connect()
使用下面的代码尝试以60 fps录制视频30秒(busy_wait负责控制帧率):
import time
from lerobot.scripts.control_robot import busy_wait
record_time_s = 30
fps = 60
states = []
actions = []
for _ in range(record_time_s * fps):
start_time = time.perf_counter()
observation, action = robot.teleop_step(record_data=True)
states.append(observation[“observation.state”])
actions.append(action[“action”])
dt_s = time.perf_counter() - start_time
busy_wait(1 / fps - dt_s)
摄像头拍摄的图像帧会以线程的形式保存在磁盘上,并在录制结束时编码为视频。
也可以将视频流显示在窗口中,以方便验证。
还可以使用命令行参数设置数据记录流程,包括录制开始前、录制过程和录制结束后停留的时间。
可视化
python lerobot/scripts/visualize_dataset_html.py \
–root data \
–repo-id ${HF_USER}/koch_test
以上命令将启动一个本地Web服务器,如下所示:
建议
一旦您熟悉了数据记录,就可以创建更大的数据集进行训练。一个好的开始任务是在不同位置抓取一个物体并将其放入箱子中。
建议至少录制50集,每个地点10集。在整个录制过程中保持摄像机固定并保持一致的抓取行为。
实现可靠的抓取性能后,您可以开始在数据收集过程中引入更多变化,例如额外的抓取位置、不同的抓取技术以及改变相机位置。
避免过快地添加太多变化,因为这可能会影响您的结果。
参考资料:
https://x.com/RemiCadene
那么,如何系统的去学习大模型LLM?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
篇幅有限,部分资料如下:
👉LLM大模型学习指南+路线汇总👈
💥大模型入门要点,扫盲必看!
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。
路线图很大就不一一展示了 (文末领取)
👉大模型入门实战训练👈
💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉国内企业大模型落地应用案例👈
💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
👉GitHub海量高星开源项目👈
💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!
👉LLM大模型学习视频👈
💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
👉640份大模型行业报告(持续更新)👈
💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉获取方式:
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓