Linux的grub2启动菜单默认项修改

1、vi /etc/default/grub
将GRUB_DEFAULT=save修改为 GRUB_DEFAULT=2 (第一项从0开始计算,2代表默认启动项为第三个)
2、执行如下命令生效。
grub2-mkconfig -o /boot/grub2/grub.cfg
3、重启。

### PaddlePaddle 3.0 Fluid 的相关信息 PaddlePaddle 是百度开源的一个深度学习框架,而 Fluid 是其动态图机制的一部分。在 PaddlePaddle 2.x 版本之后,官方逐渐统一动静态图接口,并引入了更灵活的编程范式[^1]。 #### 训练配置准备 通过 `paddle.Model.prepare` 方法可以完成模型训练前的各项配置工作。这一步骤涉及以下几个核心组件: - **优化器**: 使用 `paddle.optimizer` 提供的各种优化算法来定义如何调整参数。 - **损失函数**: 利用 `paddle.nn.Loss` 中预置的或者自定义的损失计算逻辑。 - **评估指标**: 借助 `paddle.metric` 定义用于衡量模型表现的具体标准。 这些模块共同构成了完整的训练流程支持体系。 #### 性能调优与分布式实践 对于追求高效训练场景下的用户来说,《分布式深度学习最佳入门(踩坑)指南》提供了丰富的实践经验分享[^2]。尽管该文档主要围绕 OneFlow 展开讨论,但其中提到的一些通用原则同样适用于 PaddlePaddle 用户群体。例如,在大规模集群环境下实现高效的通信策略以及合理分配计算资源等方面的知识点具有较高的借鉴价值。 另外值得注意的是,随着版本迭代升级,具体API可能会有所变化,请始终参照最新官方文档获取最准确的信息。 ```python import paddle from paddle.vision.models import resnet18 from paddle.vision.datasets import Cifar10 from paddle.metric import Accuracy model = paddle.Model(resnet18()) optim = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters()) loss_fn = paddle.nn.CrossEntropyLoss() acc_metric = Accuracy() train_dataset = Cifar10(mode='train') test_dataset = Cifar10(mode='test') model.prepare(optimizer=optim, loss=loss_fn, metrics=[acc_metric]) model.fit(train_data=train_dataset, eval_data=test_dataset, epochs=5, batch_size=64) ``` 上述代码片段展示了基于 PaddlePaddle 构建并运行一个简单图像分类任务的过程实例。 ### 更新日志查询方式 如果希望查找特定功能或改动记录,则可以通过访问 GitHub 上对应的 release notes 页面来进行详细了解。此外,“我的收藏” 功能允许快速定位感兴趣的内容项;只需利用页面右上角提供的搜索框输入关键词即可找到相关内容链接[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hi~9527

看我这么卖力,可怜可怜我吧!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值