英伟达训练营RAG机器人(基础版)

概述:

        该RAG对话机器人可利用Rag技术对使用者的提问生成答案,可以文字的形式回答提问者。同时,该机器人采用微软phi-3-small-128k-instruct的模型,其具有高性能,低延迟,低成本的特点。

模型选择:

         此机器人采用微软的phi-3-small-128k-instruct模型,Phi-3模型支持不同长度的上下文窗口,其中Phi-3-mini是同类模型中首个支持最多128K令牌上下文窗口的模型。 该模型在Azure AI上利用部署-评估-微调工具链,以及在Ollama上提供本地运行支持。经过优化,支持跨平台的ONNX Runtime,并可在GPU、CPU甚至移动硬件上运行。 作为NVIDIA NIM微服务提供,具有标准API接口,可在任何地方部署,并针对NVIDIA GPU进行了优化

数据的构建:

数据向量化的意义在于它实现了一种可计算的表示方式来表达非结构化数据的语义信息。将非结构化数据映射到固定维度的向量空间中,使得机器可以“理解”这些数据的内在关联,并进行运算。例如,在向量空间中,语义相关的词语对应的向量之间距离较近,不相关词语距离较远。

数据向量化的详细过程请前往“代码实现”部分

实施步骤:

1.环境搭建

首先要安装Miniconda或Anaconda(点击跳转至官网),随后在Anaconda Powershell中依次输入并运行以下代码:

conda create --name ai_endpoint python=3.8
conda activate ai_endpoint
pip install langchain-nvidia-ai-endpoints
pip install jupyterlab
 pip install langchain_core
 pip install langchain
 pip install matplotlib
 pip install numpy
pip install faiss-cpu==1.7.2
 pip install openai
 jupyter-lab 
2.代码实现

        1.登录NVIDA NIAPI-Key,获取API-Key(不是无限次的,不要泄露给他人)

        2.部分代码截图:

                在NVAPI Key处输入你刚才获得的Key

        接下来,程序会运行这段代码,然后列出可供选择的模型名称,您可以尝试不同的模型

        列表中的部分模型:

        这里,我们选用的是phi-3-small-128k-instruct模型,接下来,我们需要初始化SLM

        

        运行完这段代码,它会对我们的问题(你是谁)做出回答

        其他相关部分:

        

成果展示:

问题与分析:

问题:在准备环境时,因为各种原因,容易导致安装失败

措施:大部分的安装失败都与网络有关,建议大家使用清华的国内镜像网站进行下载,或者挂上梯子(梯子有风险,且不够稳定)

项目评估与未来:

此机器人虽然已经可以实现基本的文字问答,但功能还不够丰富,下一步可以继续引进Agent、语音问答等功能,或为其设计更加简洁,逻辑更加清晰的UI界面,使其拥有更高的实用价值

参考资料:

SLMs之Phi-3:Phi-3的简介、安装和使用方法、案例应用之详细攻略

微软Phi-3:小型而强大的AI模型,推动物联网与移动设备进入高效时代

向量数据库与数据向量化技术综述

<think>好的,用户让我帮忙写一个基于英伟达开发板的机器人控制代码。首先,我需要确定用户具体使用的是哪款英伟达开发板,比如Jetson Nano、TX2、Xavier还是Orin。不同的开发板在硬件配置和软件支持上可能有所差异,不过大多数情况下,Jetson系列的使用比较普遍,尤其是Nano,适合入门项目。 接下来,用户的需求是机器人控制代码,这可能涉及到电机控制、传感器数据读取、通信协议等方面。需要明确机器人使用的硬件组件,比如电机驱动模块(如L298N、TB6612FNG)、传感器(如超声波、摄像头、IMU)以及通信方式(GPIO、I2C、PWM等)。不过用户没有提供具体细节,所以得做一个通用示例,并提醒用户根据实际硬件调整。 考虑到用户可能不熟悉英伟达开发板的编程环境,可能需要使用Python,因为Python在Jetson系列上支持较好,且有丰富的库如Jetson.GPIO。代码结构应包括初始化GPIO、电机控制函数、传感器读取(比如简单的超声波测距)以及主循环中的逻辑,比如避障。 同时,需要注意代码的健壮性,比如异常处理和资源释放,确保在程序终止时正确清理GPIO。此外,用户可能需要了解如何安装必要的库,比如Jetson.GPIO和RPi.GPIO的兼容层,或者使用Jetson-Utils中的摄像头支持。 用户可能没有提到的深层需求可能是如何扩展功能,比如添加SLAM或计算机视觉,但当前问题集中在基础控制,所以保持代码简单,但提供扩展建议会更好。需要确保代码示例正确,语法无误,并附上必要的注释,方便用户理解和修改。最后,提醒用户根据实际硬件调整引脚和逻辑,确保安全操作。</think>以下是一个基于 **NVIDIA Jetson Nano** 开发板的机器人控制基础代码框架(使用Python,支持电机驱动和简单传感器交互)。请根据实际硬件调整参数: --- ### 1. 环境准备 ```python # 安装必要库(Jetson Nano已预装部分) !sudo apt-get install python3-pip !pip install Jetson.GPIO # GPIO控制库 ``` --- ### 2. 基础电机控制代码 ```python import Jetson.GPIO as GPIO import time # 初始化GPIO GPIO.setmode(GPIO.BOARD) # 使用物理引脚编号 GPIO.setwarnings(False) # 定义电机引脚(示例:L298N驱动模块) IN1 = 18 # 控制左侧电机方向 IN2 = 16 ENABLE_A = 22 # 左侧电机PWM使能 IN3 = 15 # 控制右侧电机方向 IN4 = 13 ENABLE_B = 11 # 右侧电机PWM使能 # 设置引脚模式 GPIO.setup([IN1, IN2, IN3, IN4], GPIO.OUT) GPIO.setup([ENABLE_A, ENABLE_B], GPIO.OUT) # 创建PWM对象(频率50Hz) pwm_a = GPIO.PWM(ENABLE_A, 50) pwm_b = GPIO.PWM(ENABLE_B, 50) pwm_a.start(0) # 初始占空比0% pwm_b.start(0) # 电机控制函数 def motor_control(left_speed, right_speed): # 左侧电机 if left_speed > 0: GPIO.output(IN1, GPIO.HIGH) GPIO.output(IN2, GPIO.LOW) else: GPIO.output(IN1, GPIO.LOW) GPIO.output(IN2, GPIO.HIGH) pwm_a.ChangeDutyCycle(abs(left_speed)) # 右侧电机 if right_speed > 0: GPIO.output(IN3, GPIO.HIGH) GPIO.output(IN4, GPIO.LOW) else: GPIO.output(IN3, GPIO.LOW) GPIO.output(IN4, GPIO.HIGH) pwm_b.ChangeDutyCycle(abs(right_speed)) # 示例:前进2秒后停止 try: motor_control(60, 60) # 60%速度前进 time.sleep(2) motor_control(0, 0) # 停止 finally: pwm_a.stop() pwm_b.stop() GPIO.cleanup() # 清理GPIO ``` --- ### 3. 扩展功能建议 #### (1) 添加传感器(示例:超声波避障) ```python # 超声波引脚定义 TRIG = 23 ECHO = 24 GPIO.setup(TRIG, GPIO.OUT) GPIO.setup(ECHO, GPIO.IN) def get_distance(): GPIO.output(TRIG, GPIO.HIGH) time.sleep(0.00001) GPIO.output(TRIG, GPIO.LOW) while GPIO.input(ECHO) == 0: pulse_start = time.time() while GPIO.input(ECHO) == 1: pulse_end = time.time() distance = (pulse_end - pulse_start) * 17150 # 单位:厘米 return round(distance, 2) ``` #### (2) 摄像头集成(使用Jetson-Utils) ```python from jetson_utils import videoSource, videoOutput camera = videoSource("/dev/video0") # 摄像头设备 display = videoOutput("display://0") # 显示窗口 while display.IsStreaming(): img = camera.Capture() if img is None: break display.Render(img) ``` --- ### 4. 注意事项 1. **硬件适配**:根据实际驱动板(如L298N/TB6612FNG)调整引脚和逻辑 2. **电源管理**:确保外接电源能满足电机需求(建议使用独立电源) 3. **实时控制**:对高实时性需求可考虑C++开发(使用NVIDIA JetPack SDK) 如果需要更具体的实现(如PID控制、SLAM导航等),请提供硬件细节和需求方向! 🚀
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值