LLM赋能Agent:从感知到认知的跨越

本文探讨了人工智能从感知到认知的演进,重点介绍了大语言模型(LLM)如何赋能Agent,使其具备更强的语言理解、推理和决策能力。通过将LLM集成到Agent中,应用于智能客服、虚拟助手和游戏NPC等领域,实现更智能的交互和行为。同时,文章也提到了未来面临的挑战,如可控性、效率和泛化能力的问题。
摘要由CSDN通过智能技术生成

1. 背景介绍

1.1 人工智能的演进:从感知到认知

人工智能(AI)领域经历了漫长的发展历程,从早期的符号主义到连接主义,再到如今的深度学习,AI 系统的能力不断提升。然而,传统的 AI 系统大多局限于感知层面,例如图像识别、语音识别等,缺乏认知能力,无法像人类一样进行推理、规划和决策。近年来,随着大语言模型(LLM)的兴起,AI 领域迎来了新的突破,LLM 强大的语言理解和生成能力,为赋予 Agent 认知能力提供了新的途径。

1.2 Agent 与 LLM 的结合:开启智能新篇章

Agent 是指能够感知环境并采取行动的智能体,其目标是最大化累积回报。传统 Agent 通常基于规则或简单的机器学习模型,难以处理复杂的环境和任务。LLM 的出现为 Agent 的发展带来了新的机遇,通过将 LLM 集成到 Agent 中,可以赋予 Agent 强大的语言理解、推理和决策能力,使其能够更好地理解环境、制定策略并执行行动。

2. 核心概念与联系

2.1 大语言模型(LLM)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值