知识表示与知识图谱原理与代码实战案例讲解
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:知识表示,知识图谱,图数据库,关系挖掘,自然语言处理,深度学习
1. 背景介绍
1.1 问题的由来
在信息爆炸的时代,如何有效地组织、存储和查询大量数据成为了亟待解决的问题。传统的关系型数据库虽然在数据结构化方面具有优势,但在处理非结构化或半结构化数据时显得力不从心。此外,随着人工智能技术的发展,对知识进行表示和推理的需求日益增加,这就催生了知识图谱的概念。
1.2 研究现状
知识图谱作为一种新兴的数据表示方式,旨在将现实世界中的实体及其关系结构化地表示出来。它通常由节点(表示实体)和边(表示关系)组成,可以看作是图数据库的一种扩展形式。知识图谱在多个领域得到了广泛应用,包括搜索引擎、推荐系统、知识推理、个性化服务等。
1.3 研究意义
知识图谱对于提升信息检索的精准度、增强系统对上下文的理解能力以及支持更复杂的业务逻辑具有重要意义。通过构建知识图谱,可以实现跨领域信息的关联,提高数据