多模态大模型:技术原理与实战 多模态大模型在金融领域中的应用

多模态大模型、金融科技、自然语言处理、计算机视觉、深度学习、Transformer、BERT、GPT、图像识别、文本分类、风险评估、欺诈检测

1. 背景介绍

近年来,人工智能(AI)技术取得了飞速发展,特别是深度学习的突破,使得多模态大模型(Multimodal Large Models,MLMs)的出现成为可能。多模态大模型能够处理多种类型的数据,例如文本、图像、音频、视频等,并从中提取有意义的信息,实现跨模态的理解和生成。

金融行业作为数据密集型行业,蕴藏着丰富的多模态数据资源,例如交易记录、客户画像、新闻报道、社交媒体评论等。利用多模态大模型,可以挖掘这些数据中的隐藏价值,提升金融服务的效率和智能化水平。

2. 核心概念与联系

多模态大模型的核心概念是融合不同模态数据的信息,构建一个统一的表示空间,实现跨模态的理解和交互。

2.1 多模态数据

多模态数据是指包含多种类型数据信息的集合,例如文本、图像、音频、视频等。

2.2 多模态融合

多模态融合是指将不同模态数据的信息融合在一起,形成一个更加完整的表示。

2.3 多模态大模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值