多模态大模型、金融科技、自然语言处理、计算机视觉、深度学习、Transformer、BERT、GPT、图像识别、文本分类、风险评估、欺诈检测
1. 背景介绍
近年来,人工智能(AI)技术取得了飞速发展,特别是深度学习的突破,使得多模态大模型(Multimodal Large Models,MLMs)的出现成为可能。多模态大模型能够处理多种类型的数据,例如文本、图像、音频、视频等,并从中提取有意义的信息,实现跨模态的理解和生成。
金融行业作为数据密集型行业,蕴藏着丰富的多模态数据资源,例如交易记录、客户画像、新闻报道、社交媒体评论等。利用多模态大模型,可以挖掘这些数据中的隐藏价值,提升金融服务的效率和智能化水平。
2. 核心概念与联系
多模态大模型的核心概念是融合不同模态数据的信息,构建一个统一的表示空间,实现跨模态的理解和交互。
2.1 多模态数据
多模态数据是指包含多种类型数据信息的集合,例如文本、图像、音频、视频等。
2.2 多模态融合
多模态融合是指将不同模态数据的信息融合在一起,形成一个更加完整的表示。
2.3 多模态大模型