人工智能咨询培训老师叶梓 转载标明出处
在金融领域,对大量非结构化数据的处理和分析一直是行业面临的重要挑战。为了解决这一问题,由不列颠哥伦比亚大学和Invertible AI的研究团队共同提出了一套名为FinTral的先进多模态大模型(LLMs)。FinTral模型专为金融分析而设计,它整合了文本、数值、表格和图像数据。金融文档通常包含密集的数字信息和特定领域的术语,模型具备高级的数字处理和推理能力。
图 1为FinTral与ChatGPT (GPT-3.5) 和 GPT-4在七个任务类别上的表现比较分析。这些任务包括情感分析(SA)、命名实体识别(NER)、数字理解(NU)、文本摘要(TS)、股票走势预测(SMP)、信用评分(CS)和公司披露(FD)。FinTral在没有经过特定任务训练的情况下就能展现出良好的性能。
FinSet数据集
在构建FinTral模型的过程中,研究团队开发了FinSet,这是一个高质量、20亿token的大规模数据集,专门用于金融领域的大型语言模型(LLM)训练。FinSet的建立基于2.9亿份文档,总计1359亿个token,这些文档经过精心清洗,以确保数据的相关性和准确性。清洗流程包括去除重复内容、过滤非金融领域文档、排除敏感信息,并且最终形成了20亿个token的精简数据集。图2为FinSET金融训练和评估基准,包括预训练数据、指令调整数据、多模态指令数据、金融AI反馈数据和下游任务。
预训练数据集是FinSet的基础,它包含了以下类型的文档:
- C4:包含2.8亿份文档,124亿个token,清洗后剩下11.75亿个deduplicated tokens。
- 新闻:5150万份文档,8.7亿个token,清洗后剩下5.65亿个deduplicated tokens。
- SEC文件:430万份文档,3.1亿个token,清洗后剩下2.55亿个deduplicated tokens。
- 社交媒体:71.7万份文档,820万个token,清洗后剩下787万个deduplicated tokens。
- 新闻稿:12万份文档,310万个token,清洗后剩下155万个deduplicated tokens。