钣金件视觉检测

传统五金件制造业的检测面临精度挑战,人工检测难以满足需求。陕西永辉收到客户需求,希望通过机器视觉技术改善钣金件的视觉检测,包括自动剔除缺陷产品。尽管与传统五金件检测相似,但不规则产品的表面缺陷检查具有复杂性,人工判断易出错且效率低。机器视觉的应用有望解决这些问题,提高检测准确性和效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传统的五金件制造业检测都是依靠着人工检测模式,伴随着精度要求的不断提高,依靠传统手段已经很难实现,此时只能寻求其他突破手段,前不久陕西永辉收到了一位客户有关钣金件视觉检测的需求,希望我们通过机器视觉的手段将检测效率进一步提升,甚至可以增加自动剔除等联动装置。

虽说是钣金件视觉检测,其实和传统的五金件缺陷检测的需求大同小异,接下来我们来了解传统缺陷检测出现的问题:

产品的外观。相对而言,平板金属冲压产品的表面缺陷相对容易检查,而非目标奇形怪状产品的表面缺陷检查肯定比较困难;

要检查的缺陷类型,通常五金产品的缺陷无非是漏加工、表面凸起、麻点、划痕、凹坑、电镀异常等。关于漏加工,目测肯定是可以解决的。因为是0和1的关系,有则无。至于表面缺陷,特别是那些不规则的产品,表面缺陷检查就更难了,主要是因为制造商自己对缺陷的定义不确定。即使有非常严格的缺陷定义,在实践中也很难使用人工工具检测出实际的缺陷大小,同样,仍然依靠肉眼来判断缺陷是否达标。这样在目测的过程中就会很难满足用户的要求,要么是检测出太多的不良品,要么是检测结果无法满足用户的要求。

### 钣金件多目视觉测量技术与方法 #### 1. 多目视觉系统的定义与原理 多目视觉系统是一种通过多个摄像头协同工作来获取物体三维信息的技术。它利用三角测量法或其他几何计算方法,结合不同视角下的图像数据重建目标对象的空间模型[^1]。 #### 2. 应用于钣金件的质量控制 在钣金件制造过程中,多目视觉测量能够实现高精度的尺寸检测以及表面缺陷识别。相比于传统的接触式测量工具,如卡尺或三坐标测量机(CMM),该技术具有非接触性和快速性的特点[^4]。例如,在汽车行业中使用的显扬科技自主研发的3D机器视觉设备(HY-M5),可以完成全场扫描采集并提供详细的点云数据,这对于评估复杂曲面钣金件尤为重要[^3]。 #### 3. 关键组件和技术参数 为了成功实施多目视觉测量方案,需考虑以下几个方面: - **硬件配置**: 包括工业级摄像机、特定波长光源(见光源颜色的选择)[^2] 和精确校准后的镜头组合; - **软件算法开发**: 主要涉及特征提取、匹配算法设计及其优化过程; - **性能指标设定**: 明确所需达到的速度、分辨率及重复性等标准。 #### 4. 实际案例分析 假设某工厂正在生产一批结构复杂的车门框架类钣金部件,则可以通过部署一套由至少两个同步触发工作的高速CCD相机组成的双目/多目立体视觉系统来进行在线监测。这些相机会捕捉到工件的不同侧面影像,并将其传输给计算机处理单元进行实时运算得出最终结果——即实际物理位置相对于理想CAD模型之间的差异情况报告单。 ```python import numpy as np from scipy.spatial.transform import Rotation as R def calculate_3d_coordinates(image_points, camera_matrices): """ 计算基于两幅或多幅图片对应点集的世界坐标系下三维坐标 参数: image_points (list): 各视图上的投影点列表 [[u1,v1],...,[un,vn]] camera_matrices(list of ndarray): 每台摄像装置对应的内外参矩阵 返回值: world_coords(ndarray): 物体表面上各采样点的真实空间分布向量组形式表示 """ # 假设已知所有参与协作拍摄任务的摄影头内部参数K_i和外部姿态[R|t]i A = [] b = [] for i in range(len(camera_matrices)): K_inv = np.linalg.inv(camera_matrices[i][:3,:3]) rvec = R.from_matrix(camera_matrices[i][:3,-1].reshape((3,1))) u,v = image_points[i] temp = [-f*(rvec.apply([X,Y,Z]) + T) for f,X,Y,Z,T in zip(K_inv.diagonal(),*image_points,camera_matrices[:,3])] A.extend(temp[:2]) b.append(-temp[-1]) solution,_ ,_,_=np.linalg.lstsq(np.array(A),np.array(b)) return solution.reshape((-1,)) ``` 上述代码片段展示了如何根据输入的一系列二维像素坐标转换得到相应的世界坐标系内的三维位置矢量集合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值