数学分析复习:实数列收敛

本篇文章适合个人复习翻阅,不建议新手入门使用

1. 定义、性质

定义:数列极限

设实数列 { x n } n ≥ 1 \{x_n\}_{n\geq 1} {xn}n1,若存在 x ∈ R x\in\mathbb{R} xR,使得
∀ ε > 0 , ∃ N ≥ 1 , s . t . ∀ n ≥ N , ∣ x n − x ∣ < ε \forall \varepsilon>0,\exists N\geq 1,s.t.\forall n\geq N,|x_n-x|<\varepsilon ε>0,N1,s.t.∀nN,xnx<ε则称数列 { x n } \{x_n\} {xn}收敛,称 x x x { x n } \{x_n\} {xn} 的极限


∀ M > 0 , ∃ > 0 , s . t . ∀ n ≥ N , ∣ x n ∣ > M \forall M>0,\exists>0,s.t.\forall n\geq N,|x_n|>M M>0,>0,s.t.∀nN,xn>M则称数列 { x n } \{x_n\} {xn}发散

注:有的书将没有极限的情形也叫做发散

性质

  1. 四则运算:设 lim ⁡ n → ∞ a n , lim ⁡ n → ∞ b n \lim\limits_{n\to\infty}a_n,\lim\limits_{n\to\infty}b_n nliman,nlimbn 均存在,则
    lim ⁡ n → ∞ ( α a n + β b n ) = α lim ⁡ n → ∞ a n + β lim ⁡ n → ∞ b n \lim\limits_{n\to\infty}(\alpha a_n+\beta b_n)=\alpha \lim\limits_{n\to\infty}a_n+\beta \lim\limits_{n\to\infty}b_n nlim(αan+βbn)=αnliman+βnlimbn lim ⁡ n → ∞ ( a n ⋅ b n ) = lim ⁡ n → ∞ a n ⋅ lim ⁡ n → ∞ b n \lim\limits_{n\to\infty}(a_n\cdot b_n)=\lim\limits_{n\to\infty}a_n\cdot \lim\limits_{n\to\infty}b_n nlim(anbn)=nlimannlimbn lim ⁡ n → ∞ a n b n = lim ⁡ n → ∞ a n lim ⁡ n → ∞ b n ( lim ⁡ n → ∞ b n ≠ 0 ) \lim\limits_{n\to\infty}\frac{a_n}{b_n}=\frac{\lim\limits_{n\to\infty}a_n}{\lim\limits_{n\to\infty}b_n}(\lim\limits_{n\to\infty}b_n\neq 0) nlimbnan=nlimbnnliman(nlimbn=0)
  2. 唯一性:
    A , B A,B A,B 都是 a n a_n an 的极限,则 A = B A=B A=B

证明思路:
∣ A − B ∣ ≤ ∣ A − a n ∣ + ∣ B − a n ∣ < ε |A-B|\leq |A-a_n|+|B-a_n|<\varepsilon ABAan+Ban<ε

  1. 保序性
    极限有序 ⇒ \Rightarrow 数列尾部有序:
    lim ⁡ n → ∞ a n > lim ⁡ n → ∞ b n \lim\limits_{n\to\infty}a_n>\lim\limits_{n\to\infty}b_n nliman>nlimbn ,则 ∃ N > 0 , ∀ n > N , s . t . a n > b n \exists N>0,\forall n>N,s.t.a_n>b_n N>0,n>N,s.t.an>bn数列有序 ⇒ \Rightarrow 极限有序:
    lim ⁡ n → ∞ a n , lim ⁡ n → ∞ b n \lim\limits_{n\to\infty}a_n,\lim\limits_{n\to\infty}b_n nliman,nlimbn 存在,且 a n ≥ b n a_n\geq b_n anbn,则 lim ⁡ n → ∞ a n ≥ lim ⁡ n → ∞ b n \lim\limits_{n\to\infty}a_n\geq \lim\limits_{n\to\infty}b_n nlimannlimbn

  2. 极限存在 ⇒ \Rightarrow 数列有界
    lim ⁡ n → ∞ a n = A \lim\limits_{n\to\infty}a_n=A nliman=A,则
    ∃ N > 0 , ∃ M > 0 , ∀ n > N , ∣ a n ∣ ≤ M \exists N>0,\exists M>0,\forall n>N,|a_n|\leq M N>0,M>0,n>N,anM

  3. 夹逼性:(数列版本的控制收敛定理)
    lim ⁡ n → ∞ a n = lim ⁡ n → ∞ b n = A \lim\limits_{n\to\infty}a_n=\lim\limits_{n\to\infty}b_n=A nliman=nlimbn=A,且 ∃ N > 0 , s . t . ∀ n > N \exists N>0,s.t.\forall n>N N>0,s.t.∀n>N,有 a n ≤ c n ≤ b n a_n\leq c_n\leq b_n ancnbn,则 lim ⁡ n → ∞ c n = A \lim\limits_{n\to\infty}c_n=A nlimcn=A

2. 单调有界实数列必收敛

只需证明以下的版本

命题
设实数列 { x n } \{x_n\} {xn}有界,且单调递增,那么 { x n } \{x_n\} {xn}必收敛于其上确界,即
lim ⁡ n → ∞ x n = sup ⁡ n ≥ 1 x n \lim\limits_{n\to\infty}x_n=\sup\limits_{n\geq 1}x_n nlimxn=n1supxn证明思路:(确界原理)
a = sup ⁡ n ≥ 1 x n a=\sup\limits_{n\geq 1}x_n a=n1supxn,由上确界的等价刻画
∀ ε > 0 , ∃ , s . t . − ε < x n − a < 0 \forall \varepsilon >0,\exists,s.t.-\varepsilon <x_n-a<0 ε>0,,s.t.ε<xna<0由于 { x n } \{x_n\} {xn}是单调递增的,则
∀ n ≥ N , − ε < x n − a < 0 \forall n\geq N,-\varepsilon<x_n-a<0 nN,ε<xna<0 ∣ x n − a ∣ < ε |x_n-a|<\varepsilon xna<ε

3. Bolzano-Weierstrass定理

也称BW凝聚定理,简称B-W定理,内容是:有界实数列必有收敛子列

证明思路:(单调有界实数列必收敛+如下的引理)

引理:任意实数列必有单调子列

引理的证明:构造这样一个集合
X = { x k ∣ ∀ l ≥ k , x k ≥ x l } X=\{x_k|\forall l\geq k,x_k\geq x_l\} X={xk∣∀lk,xkxl}为理解X的构造,我们探索 { x n } \{x_n\} {xn}中什么样的元素可以进入X

  • x 1 x_1 x1开始,第一个不小于自己以后所有元素的那项进入X,记为 x i 1 x_{i_1} xi1
  • 检查 x i 1 + 1 x_{i_1+1} xi1+1是否符合以下条件
    • x i 1 x_{i_1} xi1
    • 后面没有比自己大的元素
  • 若符合,则可进入X;否则检查 x i 1 + 2 x_{i_1+2} xi1+2,直至找到下一个进入X的元素,记为 x i 2 x_{i_2} xi2
  • x i 2 + 1 x_{i_2+1} xi2+1进行检查……

理解了上述过程,就容易给出证明
若X是无限集,X自然给出了一个单调下降的子列
若X是有限集,设最后一个进入X的元素为 x i l x_{i_l} xil,它以后的元素都比它小;
考虑 x i l + 1 x_{i_l+1} xil+1,则它后面必有元素比它大,否则它会进入X;按照此规则,必然能找到一个单调递增的子列

4. Cauchy收敛准则

4.1 Cauchy列的定义和性质

首先给出Cauchy列的定义
设实数列 { x n } \{x_n\} {xn}
∀ ε > 0 , ∃ N ≥ 1 , s . t . ∀ m , n ≥ N , ∣ x m − x n ∣ < ε \forall \varepsilon>0,\exists N\geq 1,s.t.\forall m,n\geq N,|x_m-x_n|<\varepsilon ε>0,N1,s.t.∀m,nN,xmxn<ε称满足上述性质的实数列为Cauchy列

性质1:Cauchy列必有界

性质2:Cauchy列的子列若收敛,那么它本身也收敛

证明思路:使用加减同一项再辅以三角不等式的经典方法
∣ x n − x ∣ ≤ ∣ x n − x i k ∣ + ∣ x i k − x ∣ < ε |x_n-x|\leq |x_n-x_{i_k}|+|x_{i_k}-x|<\varepsilon xnxxnxik+xikx<ε注:性质2说的是,Cauchy列不可能有两个收敛到不同地方的子列

4.2 实数列的Cauchy收敛准则

实数列 { x n } \{x_n\} {xn}收敛当且仅当它是Cauchy列

证明:
必要性:使用加减同一项再辅以三角不等式的经典方法
充分性:Cauchy有界,由BW定理知有收敛子列,故收敛

5. 上极限和下极限

定义:极限点
设实数列 { x n } \{x_n\} {xn},若存在其子列 { x n k } \{x_{n_k}\} {xnk},使得 lim ⁡ k → ∞ x x k = ξ \lim\limits_{k\to\infty}x_{x_k}=\xi klimxxk=ξ,则称 ξ \xi ξ { x n } \{x_n\} {xn} 的一个极限点,或称为聚点, { x n } \{x_n\} {xn} 的极限点全体构成的集合记为 c l u s t { x n } clust\{x_n\} clust{xn}

存在性与唯一性
极限点必然存在(在包含无穷的意义下);显然若存在极限,则极限即为唯一的极限点;若不存在极限,则极限点有很多个。

证明思路
存在性:在数列有界的条件下,由Weierstrass定理保证,在无界条件下,容易构造趋于无穷的子列。

接下来若无特别说明,我们考虑的数列 { x n } \{x_n\} {xn} 均为有界数列,这意味着 c l u s t { x n } clust\{x_n\} clust{xn} 非空有界

定理
对于集合 E = c l u s t { x n } E=clust\{x_n\} E=clust{xn},其确界可在集合内取到,即
sup ⁡ E = max ⁡ E , inf ⁡ E = min ⁡ E \sup E=\max E,\inf E=\min E supE=maxE,infE=minE

证明思路
只证 sup ⁡ E = max ⁡ E \sup E=\max E supE=maxE,由定义 E E E 中有序列 { ξ k } \{\xi_k\} {ξk} 收敛于 sup ⁡ E \sup E supE
故可以选取合适的 { x n k } \{x_{n_k}\} {xnk},使得
∣ x n k − sup ⁡ E ∣ ≤ ∣ x n k − ξ k ∣ + ∣ ξ k − sup ⁡ E ∣ < ε |x_{n_k}-\sup E|\leq |x_{n_k}-\xi_k|+|\xi_k-\sup E|<\varepsilon xnksupExnkξk+ξksupE<ε

定义:上、下极限
设实数列 { x n } \{x_n\} {xn} E = c l u s t { x n } E=clust\{x_n\} E=clust{xn},则称 sup ⁡ E \sup E supE 为数列 { x n } \{x_n\} {xn} 的上极限;类似可定义下极限,记作
l i m ‾ ⁡ n → ∞ x n = sup ⁡ E , l i m ‾ ⁡ n → ∞ x n = inf ⁡ E \varlimsup\limits_{n\to\infty}x_n=\sup E,\varliminf_{n\to\infty}x_n=\inf E nlimxn=supE,nlimxn=infE

性质
l i m ‾ ⁡ n → ∞ ( x n + y n ) ≤ l i m ‾ ⁡ n → ∞ x n + l i m ‾ ⁡ n → ∞ y n \varlimsup\limits_{n\to\infty}(x_n+y_n)\leq \varlimsup\limits_{n\to\infty}x_n+\varlimsup\limits_{n\to\infty}y_n nlim(xn+yn)nlimxn+nlimyn l i m ‾ ⁡ n → ∞ ( x n + y n ) ≥ l i m ‾ ⁡ n → ∞ x n + l i m ‾ ⁡ n → ∞ y n \varliminf\limits_{n\to\infty}(x_n+y_n)\geq \varliminf\limits_{n\to\infty}x_n+\varliminf\limits_{n\to\infty}y_n nlim(xn+yn)nlimxn+nlimyn
l i m ‾ ⁡ n → ∞ ( x n + y n ) = lim ⁡ n → ∞ x n + l i m ‾ ⁡ n → ∞ y n \varlimsup\limits_{n\to\infty}(x_n+y_n)= \lim\limits_{n\to\infty}x_n+\varlimsup\limits_{n\to\infty}y_n nlim(xn+yn)=nlimxn+nlimyn l i m ‾ ⁡ n → ∞ ( x n + y n ) = lim ⁡ n → ∞ x n + l i m ‾ ⁡ n → ∞ y n \varliminf\limits_{n\to\infty}(x_n+y_n)= \lim\limits_{n\to\infty}x_n+\varliminf\limits_{n\to\infty}y_n nlim(xn+yn)=nlimxn+nlimyn
x n , y n ≥ 0 x_n,y_n\geq 0 xn,yn0
l i m ‾ ⁡ n → ∞ ( x n y n ) ≤ l i m ‾ ⁡ n → ∞ x n ⋅ l i m ‾ ⁡ n → ∞ y n \varlimsup\limits_{n\to\infty}(x_ny_n)\leq \varlimsup\limits_{n\to\infty}x_n\cdot\varlimsup\limits_{n\to\infty}y_n nlim(xnyn)nlimxnnlimyn l i m ‾ ⁡ n → ∞ ( x n y n ) ≥ l i m ‾ ⁡ n → ∞ x n ⋅ l i m ‾ ⁡ n → ∞ y n \varliminf\limits_{n\to\infty}(x_ny_n)\geq \varliminf\limits_{n\to\infty}x_n\cdot\varliminf\limits_{n\to\infty}y_n nlim(xnyn)nlimxnnlimyn
l i m ‾ ⁡ n → ∞ ( x n y n ) = lim ⁡ n → ∞ x n ⋅ l i m ‾ ⁡ n → ∞ y n \varlimsup\limits_{n\to\infty}(x_ny_n)=\lim\limits_{n\to\infty}x_n\cdot\varlimsup\limits_{n\to\infty}y_n nlim(xnyn)=nlimxnnlimyn l i m ‾ ⁡ n → ∞ ( x n y n ) = lim ⁡ n → ∞ x n ⋅ l i m ‾ ⁡ n → ∞ y n \varliminf\limits_{n\to\infty}(x_ny_n)=\lim\limits_{n\to\infty}x_n\cdot\varliminf\limits_{n\to\infty}y_n nlim(xnyn)=nlimxnnlimyn
l i m ‾ ⁡ n → ∞ c x n = { c l i m ‾ ⁡ n → ∞ x n , c > 0 c l i m ‾ ⁡ n → ∞ x n , c < 0 \varlimsup\limits_{n\to\infty}cx_n=\begin{cases} c\varlimsup\limits_{n\to\infty}x_n,&c>0\\ c\varliminf\limits_{n\to\infty}x_n,&c<0\\ \end{cases} nlimcxn= cnlimxn,cnlimxn,c>0c<0

命题:
有界数列收敛当且仅当其上下极限相等

命题:上下极限的刻画

有界数列 { x n } \{x_n\} {xn} 的上极限为 H H H 当且仅当
∀ ε > 0 , ∃ N ∈ N > 0 , s . t . ∀ n > N , x n − H < ε \forall \varepsilon>0,\exists N\in\mathbb{N}_{>0},s.t.\forall n>N,x_n-H<\varepsilon ε>0,NN>0,s.t.∀n>N,xnH<ε ∀ ε > 0 , ∃ 无穷多 N i ∈ N > 0 , s . t . x N i − H > − ε \forall \varepsilon>0,\exists\text{无穷多} N_i\in\mathbb{N}_{>0},s.t.x_{N_i}-H>-\varepsilon ε>0,无穷多NiN>0,s.t.xNiH>ε
有界数列 { x n } \{x_n\} {xn} 的下极限为 h h h 当且仅当
∀ ε > 0 , ∃ N ∈ N > 0 , s . t . ∀ n > N , x n − H > − ε \forall \varepsilon>0,\exists N\in\mathbb{N}_{>0},s.t.\forall n>N,x_n-H>-\varepsilon ε>0,NN>0,s.t.∀n>N,xnH>ε ∀ ε > 0 , ∃ 无穷多 N i ∈ N > 0 , s . t . x N i − H < ε \forall \varepsilon>0,\exists\text{无穷多} N_i\in\mathbb{N}_{>0},s.t.x_{N_i}-H<\varepsilon ε>0,无穷多NiN>0,s.t.xNiH<ε
证明思路
只考虑上极限的情形,必要性显然
充分性:第一个条件给出 lim ⁡ n → ∞ x n ≤ H \lim\limits_{n\to\infty}x_n\leq H nlimxnH,第二个条件给出 lim ⁡ n → ∞ x n ≥ H \lim\limits_{n\to\infty}x_n\geq H nlimxnH

6. stolz 定理

stolz定理
{ y n } \{y_n\} {yn} 是严格单调递增的正无穷大量,且 lim ⁡ n → ∞ x n − x n − 1 y n − y n − 1 = a \lim\limits_{n\to\infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=a nlimynyn1xnxn1=a,则 lim ⁡ n → ∞ x n y n = a \lim\limits_{n\to\infty}\frac{x_n}{y_n}=a nlimynxn=a

证明思路:
使用先特殊后一般的技巧,依次考虑 a = 0 a=0 a=0 a a a 为非零有限数, a = ∞ a=\infty a=

a = 0 a=0 a=0:设某个 y N > 0 y_{N}>0 yN>0 ,注意到对任意 n > N n>N n>N
∣ x n − x N ∣ ≤ ∣ x n − x n − 1 ∣ + ⋯ + ∣ x N + 1 − x N ∣ < ε ( y n − y n − 1 ) + ⋯ + ε ( y N + 1 − y N ) = ε ( y n − y N ) \begin{split} |x_n-x_N|&\leq |x_n-x_{n-1}|+\cdots+|x_{N+1}-x_N|\\ &<\varepsilon(y_n-y_{n-1})+\cdots+\varepsilon(y_{N+1}-y_N)\\ &=\varepsilon (y_n-y_{N})\\ \end{split} xnxNxnxn1++xN+1xN<ε(ynyn1)++ε(yN+1yN)=ε(ynyN)同除 y n y_n yn 易得结论

参考书:

  • 《数学分析》陈纪修 於崇华 金路
  • 《数学分析之课程讲义》清华大学数学系及丘成桐数学中心
  • 《数学分析习题课讲义》谢惠民 恽自求 易法槐 钱定边 著
  • 35
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值