数值分析复习:Hermite插值

本文介绍了埃尔米特插值方法,用于解决Newon插值中可能的问题,包括背景、Lagrange形式的插值多项式、重节点下的Newton差商以及余项估计,强调了C2n+2阶连续性的必要性,适用于个人复习而非新手入门。
摘要由CSDN通过智能技术生成

本篇文章适合个人复习翻阅,不建议新手入门使用

埃尔米特(Hermite)插值

引入背景

解决newton插值可能出现极性相反的情况

插值条件

n + 1 n+1 n+1个插值节点 x 0 , x 1 , … , x n x_0,x_1,\dots,x_n x0,x1,,xn处函数值,一阶导数值相同

Lagrange形式的插值多项式

H 2 n + 1 ( x ) = ∑ j = 0 n f ( x j ) h n , j ( x ) + ∑ j = 0 n f ′ ( x j ) h ^ n , j ( x ) H_{2n+1}(x)=\sum\limits_{j=0}^nf(x_j)h_{n,j}(x)+\sum\limits_{j=0}^nf'(x_j)\hat{h}_{n,j}(x) H2n+1(x)=j=0nf(xj)hn,j(x)+j=0nf(xj)h^n,j(x)其中 h , h ^ h,\hat{h} h,h^均为 2 n + 1 2n+1 2n+1次多项式,满足

  • h n , j ( x i ) = δ i j , h n , j ′ ( x i ) = 0 h_{n,j}(x_i)=\delta_{ij},h'_{n,j}(x_i)=0 hn,j(xi)=δij,hn,j(xi)=0
  • h ^ n , j ( x i ) = 0 , h ^ n , j ′ ( x i ) = δ i j \hat{h}_{n,j}(x_i)=0,\hat{h}'_{n,j}(x_i)=\delta_{ij} h^n,j(xi)=0,h^n,j(xi)=δij

重节点Newton差商

定义基于重节点的Newton差商为 f [ x , … , x ⏟ m + 1 个 ] = f ( m ) ( x ) m ! f[\underbrace{x,\dots,x}_{m+1个}]=\frac{f^{(m)}(x)}{m!} f[m+1 x,,x]=m!f(m)(x)单节点、重节点混合的Newton差商 f [ x 0 , … , x 0 ; …   ; x n − 1 , x n ] f[x_0,\dots,x_0;\dots;x_{n-1},x_n] f[x0,,x0;;xn1,xn]可归纳地定义为
f [ x 0 , … , x 0 ; …   ; x n − 1 ] − f [ x 0 , … , x 0 ; …   ; x n ] x n − 1 − x n \frac{f[x_0,\dots,x_0;\dots;x_{n-1}]-f[x_0,\dots,x_0;\dots;x_n]}{x_{n-1}-x_n} xn1xnf[x0,,x0;;xn1]f[x0,,x0;;xn]

Newton形式的插值多项式

H 2 n + 1 ( x ) = f [ x 0 ] + f [ x 0 , x 0 ] ( x − x 0 ) + f [ x 0 , x 0 ; x 1 ] ( x − x 0 ) 2 + ⋯ + f [ x 0 , x 0 ; …   ; x n ] ( x − x 0 ) 2 ⋯ ( x − x n − 1 ) 2 + f [ x 0 , x 0 ; …   ; x n , x n ] ( x − x 0 ) 2 ⋯ ( x − x n − 1 ) 2 ( x − x n ) \begin{split} &H_{2n+1}(x)=\\ &\quad f[x_0]+f[x_0,x_0](x-x_0)+f[x_0,x_0;x_1](x-x_0)^2\\ &\quad +\cdots+f[x_0,x_0;\dots;x_n](x-x_0)^2\cdots(x-x_{n-1})^2\\ &\quad +f[x_0,x_0;\dots;x_n,x_n](x-x_0)^2\cdots(x-x_{n-1})^2(x-x_n) \end{split} H2n+1(x)=f[x0]+f[x0,x0](xx0)+f[x0,x0;x1](xx0)2++f[x0,x0;;xn](xx0)2(xxn1)2+f[x0,x0;;xn,xn](xx0)2(xxn1)2(xxn)

H 2 n ( x ) = f [ x 0 ] + f [ x 0 , x 0 ] ( x − x 0 ) + f [ x 0 , x 0 ; x 1 ] ( x − x 0 ) 2 + ⋯ + f [ x 0 , x 0 ; …   ; x n ] ( x − x 0 ) 2 ⋯ ( x − x n − 1 ) 2 \begin{split} &H_{2n}(x)=\\ &\quad f[x_0]+f[x_0,x_0](x-x_0)+f[x_0,x_0;x_1](x-x_0)^2\\ &\quad +\cdots+f[x_0,x_0;\dots;x_n](x-x_0)^2\cdots(x-x_{n-1})^2\\ \end{split} H2n(x)=f[x0]+f[x0,x0](xx0)+f[x0,x0;x1](xx0)2++f[x0,x0;;xn](xx0)2(xxn1)2

余项估计

f ∈ C 2 n + 2 [ a , b ] f\in C^{2n+2}[a,b] fC2n+2[a,b]
f ( x ) − H 2 n + 1 ( x ) = f [ x 0 , x 0 ; …   ; x n , x n ; x ] ( x − x 0 ) 2 ⋯ ( x − x n ) 2 = f ( 2 n + 2 ) ( ξ ) ( 2 n + 2 ) ! ω 2 n + 2 ( x ) \begin{split} &f(x)-H_{2n+1}(x)\\ =&f[x_0,x_0;\dots;x_n,x_n;x](x-x_0)^2\cdots(x-x_n)^2\\ =&\frac{f^{(2n+2)}(\xi)}{(2n+2)!}\omega_{2n+2}(x)\\ \end{split} ==f(x)H2n+1(x)f[x0,x0;;xn,xn;x](xx0)2(xxn)2(2n+2)!f(2n+2)(ξ)ω2n+2(x)

参考书籍:《数值分析》李庆扬 王能超 易大义 编

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值