目录
- 3.1 不定积分与定积分的概念、性质、理论
- 3.2 不定积分与定积分的计算
- 例4 求 ∫ cos 2 x − sin 2 x cos x + sin x d x \displaystyle\int\cfrac{\cos2x-\sin2x}{\cos x+\sin x}\mathrm{d}x ∫cosx+sinxcos2x−sin2xdx。
- 例6 设常数 a > 0 a>0 a>0,求 ∫ d x x + a 2 − x 2 \displaystyle\int\cfrac{\mathrm{d}x}{x+\sqrt{a^2-x^2}} ∫x+a2−x2dx。
- 例15 求 ∫ − π 4 π 4 x 1 + sin x d x \displaystyle\int^{\frac{\pi}{4}}_{-\frac{\pi}{4}}\cfrac{x}{1+\sin x}\mathrm{d}x ∫−4π4π1+sinxxdx。
- 例19 求 ∫ 1 + 2 x 4 x 3 ( 1 + x 4 ) 2 d x \displaystyle\int\cfrac{1+2x^4}{x^3(1+x^4)^2}\mathrm{d}x ∫x3(1+x4)21+2x4dx。
- 3.3 反常积分及其计算与判敛
- 3.5 定积分的证明题
- 例10 设 a n = ∫ 0 π 4 tan n x d x a_n=\displaystyle\int^{\frac{\pi}{4}}_0\tan^nx\mathrm{d}x an=∫04πtannxdx,证明 1 2 ( n + 1 ) < a n < 1 2 ( n − 1 ) ( n ⩾ 2 ) \cfrac{1}{2(n+1)}<a_n<\cfrac{1}{2(n-1)}(n\geqslant2) 2(n+1)1<an<2(n−1)1(n⩾2)。
- 例11 设 n n n为正整数, F ( x ) = ∫ 1 n x e − t 3 d t + ∫ e e ( n + 1 ) x t 2 1 + t 4 d t F(x)=\displaystyle\int^{nx}_1e^{-t^3}\mathrm{d}t+\displaystyle\int^{e^{(n+1)x}}_e\cfrac{t^2}{1+t^4}\mathrm{d}t F(x)=∫1nxe−t3dt+∫ee(n+1)x1+t4t2dt。
- 例12 设 f ( x ) f(x) f(x)在 [ 0 , 1 ] [0,1] [0,1]上连续, ∫ 0 1 f ( x ) d x = 0 \displaystyle\int^1_0f(x)\mathrm{d}x=0 ∫01f(x)dx=0。试证明:至少存在一点 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ∈(0,1),使 ∫ 0 ξ f ( t ) d t = f ( ξ ) \displaystyle\int^\xi_0f(t)\mathrm{d}t=f(\xi) ∫0ξf(t)dt=f(ξ)。
- 例13 设 f ( x ) f(x) f(x)在区间 [ 0 , 1 ] [0,1] [0,1]上连续,且 ∫ 0 1 f ( x ) d x = c ≠ 0 \displaystyle\int^1_0f(x)\mathrm{d}x=c\ne0 ∫01f(x)dx=c=0。证明:在开区间 ( 0 , 1 ) (0,1) (0,1)内至少存在不同的两点 ξ 1 ∈ ( 0 , 1 ) \xi_1\in(0,1) ξ1∈(0,1)与 ξ 2 ∈ ( 0 , 1 ) , ξ 1 ≠ ξ 2 \xi_2\in(0,1),\xi_1\ne\xi_2 ξ2∈(0,1),ξ1=ξ2,使 1 f ( ξ 1 ) + 1 f ( ξ 2 ) = 2 c \cfrac{1}{f(\xi_1)}+\cfrac{1}{f(\xi_2)}=\cfrac{2}{c} f(ξ1)1+f(ξ2)1=c2。
- 练习三
- 10. 设 f ( x ) f(x) f(x)在区间 [ 0 , 1 ] [0,1] [0,1]上单调递减且为正值的连续函数,证明 ∫ 0 1 x f 2 ( x ) d x ∫ 0 1 x f ( x ) d x ⩽ ∫ 0 1 f 2 ( x ) d x ∫ 0 1 f ( x ) d x \cfrac{\displaystyle\int^1_0xf^2(x)\mathrm{d}x}{\displaystyle\int^1_0xf(x)\mathrm{d}x}\leqslant\cfrac{\displaystyle\int^1_0f^2(x)\mathrm{d}x}{\displaystyle\int^1_0f(x)\mathrm{d}x} ∫01xf(x)dx∫01xf2(x)dx⩽∫01f(x)dx∫01f2(x)dx。
- 11. 设 f ( x ) f(x) f(x)在 [ 0 , 1 ] [0,1] [0,1]上连续。
- 写在最后
3.1 不定积分与定积分的概念、性质、理论
例5 设
f
(
x
)
=
{
e
x
,
x
⩾
0
,
x
x
<
0
,
g
(
x
)
=
{
x
sin
1
x
,
x
≠
0
,
0
,
x
=
0
,
f(x)=\begin{cases}e^x,&x\geqslant0,\\x&x<0,\end{cases}g(x)=\begin{cases}x\sin\cfrac{1}{x},&x\ne0,\\0,&x=0,\end{cases}
f(x)={ex,xx⩾0,x<0,g(x)=⎩⎨⎧xsinx1,0,x=0,x=0,下述个命题
(
1
)
(1)
(1)在
[
−
1
,
1
]
[-1,1]
[−1,1]上
f
(
x
)
f(x)
f(x)存在原函数;
(
2
)
(2)
(2)存在定积分
∫
−
1
1
f
(
x
)
d
x
\displaystyle\int^1_{-1}f(x)\mathrm{d}x
∫−11f(x)dx;
(
3
)
(3)
(3)存在
g
′
(
0
)
g'(0)
g′(0);
(
4
)
(4)
(4)在
[
−
1
,
1
]
[-1,1]
[−1,1]上
g
(
x
)
g(x)
g(x)存在原函数。
正确的是( )
(
A
)
(
1
)
,
(
2
)
;
(A)(1),(2);
(A)(1),(2);
(
B
)
(
3
)
,
(
4
)
;
(B)(3),(4);
(B)(3),(4);
(
C
)
(
2
)
,
(
4
)
;
(C)(2),(4);
(C)(2),(4);
(
D
)
(
1
)
,
(
3
)
.
(D)(1),(3).
(D)(1),(3).
解 设
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上连续或在
[
a
,
b
]
[a,b]
[a,b]上有界且只有有限个间断点,则
∫
a
b
f
(
x
)
d
x
\displaystyle\int^b_af(x)\mathrm{d}x
∫abf(x)dx存在。
设
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上连续,则在
[
a
,
b
]
[a,b]
[a,b]上必存在原函数。如果
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上有定义,但不连续,那么
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上就不一定保证存在原函数。如果
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上有跳跃间断点
x
0
∈
(
a
,
b
)
x_0\in(a,b)
x0∈(a,b),则
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上一定不存在原函数。故选
(
C
)
(C)
(C)。(这道题主要利用了存在原函数条件求解)
3.2 不定积分与定积分的计算
例4 求 ∫ cos 2 x − sin 2 x cos x + sin x d x \displaystyle\int\cfrac{\cos2x-\sin2x}{\cos x+\sin x}\mathrm{d}x ∫cosx+sinxcos2x−sin2xdx。
解
cos
2
x
−
sin
2
x
cos
x
+
sin
x
=
cos
2
x
−
sin
2
x
−
2
sin
x
cos
x
cos
x
+
sin
x
=
cos
x
−
sin
x
−
2
sin
x
cos
x
+
1
−
1
cos
x
+
sin
x
=
−
2
sin
x
+
2
2
1
sin
(
x
+
π
4
)
,
∫
cos
2
x
−
sin
2
x
cos
x
+
sin
x
d
x
=
2
cos
x
+
2
2
ln
∣
csc
(
x
+
π
4
)
−
cot
(
x
+
π
4
)
∣
+
C
.
\begin{aligned} \cfrac{\cos2x-\sin2x}{\cos x+\sin x}&=\cfrac{\cos^2x-\sin^2x-2\sin x\cos x}{\cos x+\sin x}\\ &=\cos x-\sin x-\cfrac{2\sin x\cos x+1-1}{\cos x+\sin x}\\ &=-2\sin x+\cfrac{\sqrt{2}}{2}\cfrac{1}{\sin\left(x+\cfrac{\pi}{4}\right)},\\ \displaystyle\int\cfrac{\cos2x-\sin2x}{\cos x+\sin x}\mathrm{d}x&=2\cos x+\cfrac{\sqrt{2}}{2}\ln\left|\csc\left(x+\cfrac{\pi}{4}\right)-\cot\left(x+\cfrac{\pi}{4}\right)\right|+C. \end{aligned}
cosx+sinxcos2x−sin2x∫cosx+sinxcos2x−sin2xdx=cosx+sinxcos2x−sin2x−2sinxcosx=cosx−sinx−cosx+sinx2sinxcosx+1−1=−2sinx+22sin(x+4π)1,=2cosx+22ln∣∣∣∣∣csc(x+4π)−cot(x+4π)∣∣∣∣∣+C.
(这道题主要利用了拆分函数求解)
例6 设常数 a > 0 a>0 a>0,求 ∫ d x x + a 2 − x 2 \displaystyle\int\cfrac{\mathrm{d}x}{x+\sqrt{a^2-x^2}} ∫x+a2−x2dx。
解 命
x
=
a
sin
t
x=a\sin t
x=asint,从而
a
2
−
x
2
=
a
cos
t
,
d
x
=
a
cos
t
d
t
\sqrt{a^2-x^2}=a\cos t,\mathrm{d}x=a\cos t\mathrm{d}t
a2−x2=acost,dx=acostdt,
∫
d
x
x
+
a
2
−
x
2
=
∫
cos
t
sin
t
+
cos
t
d
t
=
1
2
∫
(
cos
t
−
sin
t
sin
t
+
cos
t
+
sin
t
+
cos
t
sin
t
+
cos
t
)
d
t
=
1
2
ln
∣
sin
t
+
cos
t
∣
+
1
2
t
+
C
1
=
1
2
ln
∣
x
a
+
a
2
−
x
2
a
∣
+
1
2
arcsin
x
a
+
C
1
=
1
2
ln
∣
x
+
a
2
−
x
2
∣
+
1
2
arcsin
x
a
+
C
.
\begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{x+\sqrt{a^2-x^2}}&=\displaystyle\int\cfrac{\cos t}{\sin t+\cos t}\mathrm{d}t\\ &=\cfrac{1}{2}\displaystyle\int\left(\cfrac{\cos t-\sin t}{\sin t+\cos t}+\cfrac{\sin t+\cos t}{\sin t+\cos t}\right)\mathrm{d}t\\ &=\cfrac{1}{2}\ln|\sin t+\cos t|+\cfrac{1}{2}t+C_1\\ &=\cfrac{1}{2}\ln\left|\cfrac{x}{a}+\cfrac{\sqrt{a^2-x^2}}{a}\right|+\cfrac{1}{2}\arcsin\cfrac{x}{a}+C_1\\ &=\cfrac{1}{2}\ln\left|x+\sqrt{a^2-x^2}\right|+\cfrac{1}{2}\arcsin\cfrac{x}{a}+C. \end{aligned}
∫x+a2−x2dx=∫sint+costcostdt=21∫(sint+costcost−sint+sint+costsint+cost)dt=21ln∣sint+cost∣+21t+C1=21ln∣∣∣∣∣ax+aa2−x2∣∣∣∣∣+21arcsinax+C1=21ln∣∣∣x+a2−x2∣∣∣+21arcsinax+C.
其中,积分式含
a
2
−
x
2
\sqrt{a^2-x^2}
a2−x2,命
x
=
a
sin
t
x=a\sin t
x=asint;含
x
2
+
a
2
\sqrt{x^2+a^2}
x2+a2,命
x
=
a
tan
t
x=a\tan t
x=atant;含
x
2
−
a
2
\sqrt{x^2-a^2}
x2−a2,命
x
=
a
sec
t
x=a\sec t
x=asect。
C
sin
x
+
D
cos
x
A
sin
x
+
B
cos
x
\cfrac{C\sin x+D\cos x}{A\sin x+B\cos x}
Asinx+BcosxCsinx+Dcosx的拆项的一般步骤为
C
sin
x
+
D
cos
x
A
sin
x
+
B
cos
x
=
h
(
A
cos
x
−
B
sin
x
)
A
sin
x
+
B
cos
x
+
k
(
A
sin
x
+
B
cos
x
)
A
sin
x
+
B
cos
x
\cfrac{C\sin x+D\cos x}{A\sin x+B\cos x}=\cfrac{h(A\cos x-B\sin x)}{A\sin x+B\cos x}+\cfrac{k(A\sin x+B\cos x)}{A\sin x+B\cos x}
Asinx+BcosxCsinx+Dcosx=Asinx+Bcosxh(Acosx−Bsinx)+Asinx+Bcosxk(Asinx+Bcosx)
由
{
−
B
h
+
A
k
=
C
,
A
h
+
B
k
=
D
\begin{cases}-Bh+Ak=C,\\Ah+Bk=D\end{cases}
{−Bh+Ak=C,Ah+Bk=D定出
h
h
h与
k
k
k。从而
∫
C
sin
x
+
D
cos
x
A
sin
x
+
B
cos
x
d
x
=
h
ln
∣
A
sin
x
+
B
cos
x
∣
+
k
x
+
C
1
.
\displaystyle\int\cfrac{C\sin x+D\cos x}{A\sin x+B\cos x}\mathrm{d}x=h\ln|A\sin x+B\cos x|+kx+C_1.
∫Asinx+BcosxCsinx+Dcosxdx=hln∣Asinx+Bcosx∣+kx+C1.
(这道题主要利用了三角函数拆分求解)
例15 求 ∫ − π 4 π 4 x 1 + sin x d x \displaystyle\int^{\frac{\pi}{4}}_{-\frac{\pi}{4}}\cfrac{x}{1+\sin x}\mathrm{d}x ∫−4π4π1+sinxxdx。
解
∫
−
π
4
π
4
x
1
+
sin
x
d
x
=
∫
−
π
4
0
x
1
+
sin
x
d
x
+
∫
0
π
4
x
1
+
sin
x
d
x
=
∫
π
4
0
−
t
1
−
sin
t
(
−
d
t
)
+
∫
0
π
4
x
1
+
sin
x
d
x
=
∫
0
π
4
(
x
1
+
sin
x
−
x
1
−
sin
x
)
d
x
=
∫
0
π
4
−
2
x
sin
x
1
−
sin
2
x
d
x
=
−
2
∫
0
π
4
x
sin
x
cos
2
x
d
x
=
−
2
∫
0
π
4
x
d
(
1
cos
x
)
=
−
2
[
x
cos
x
∣
0
π
4
−
∫
0
π
4
1
cos
x
d
x
]
=
−
2
[
2
4
π
−
ln
(
2
+
1
)
]
=
−
2
2
π
+
2
ln
(
2
+
1
)
.
\begin{aligned} \displaystyle\int^{\frac{\pi}{4}}_{-\frac{\pi}{4}}\cfrac{x}{1+\sin x}\mathrm{d}x&=\displaystyle\int^0_{-\frac{\pi}{4}}\cfrac{x}{1+\sin x}\mathrm{d}x+\displaystyle\int^{\frac{\pi}{4}}_0\cfrac{x}{1+\sin x}\mathrm{d}x\\ &=\displaystyle\int^0_{\frac{\pi}{4}}\cfrac{-t}{1-\sin t}(-\mathrm{d}t)+\displaystyle\int^{\frac{\pi}{4}}_0\cfrac{x}{1+\sin x}\mathrm{d}x\\ &=\displaystyle\int^{\frac{\pi}{4}}_0\left(\cfrac{x}{1+\sin x}-\cfrac{x}{1-\sin x}\right)\mathrm{d}x=\displaystyle\int^{\frac{\pi}{4}}_0\cfrac{-2x\sin x}{1-\sin^2x}\mathrm{d}x\\ &=-2\displaystyle\int^{\frac{\pi}{4}}_0\cfrac{x\sin x}{\cos^2x}\mathrm{d}x=-2\displaystyle\int^{\frac{\pi}{4}}_0x\mathrm{d}\left(\cfrac{1}{\cos x}\right)\\ &=-2\left[\cfrac{x}{\cos x}\biggm\vert^{\frac{\pi}{4}}_0-\displaystyle\int^{\frac{\pi}{4}}_0\cfrac{1}{\cos x}\mathrm{d}x\right]\\ &=-2\left[\cfrac{\sqrt{2}}{4}\pi-\ln(\sqrt{2}+1)\right]=-\cfrac{\sqrt{2}}{2}\pi+2\ln(\sqrt{2}+1). \end{aligned}
∫−4π4π1+sinxxdx=∫−4π01+sinxxdx+∫04π1+sinxxdx=∫4π01−sint−t(−dt)+∫04π1+sinxxdx=∫04π(1+sinxx−1−sinxx)dx=∫04π1−sin2x−2xsinxdx=−2∫04πcos2xxsinxdx=−2∫04πxd(cosx1)=−2[cosxx∣∣∣∣04π−∫04πcosx1dx]=−2[42π−ln(2+1)]=−22π+2ln(2+1).
(这道题主要利用了偶函数积分求解)
例19 求 ∫ 1 + 2 x 4 x 3 ( 1 + x 4 ) 2 d x \displaystyle\int\cfrac{1+2x^4}{x^3(1+x^4)^2}\mathrm{d}x ∫x3(1+x4)21+2x4dx。
1
+
2
x
4
x
3
(
1
+
x
4
)
2
=
1
+
x
4
x
3
(
1
+
x
4
)
2
+
x
4
x
3
(
1
+
x
4
)
2
=
1
x
3
(
1
+
x
4
)
+
x
(
1
+
x
4
)
2
=
1
x
3
−
x
1
+
x
4
+
x
(
1
+
x
4
)
2
,
∫
1
+
2
x
4
x
3
(
1
+
x
4
)
2
d
x
=
∫
1
x
3
−
d
x
−
∫
x
1
+
x
4
d
x
+
∫
x
(
1
+
x
4
)
2
d
x
=
−
1
2
x
2
−
1
2
arctan
x
2
+
1
2
∫
1
(
1
+
(
x
2
)
2
)
2
d
(
x
2
)
=
x
2
=
tan
t
−
1
2
x
2
−
1
2
arctan
x
2
+
1
2
∫
sec
2
t
sec
4
t
d
t
=
−
1
2
x
2
−
1
2
arctan
x
2
+
1
2
∫
cos
2
t
d
t
=
−
1
2
x
2
−
1
2
arctan
x
2
+
1
4
(
t
+
1
2
sin
2
t
)
+
C
=
−
1
2
x
2
−
1
2
arctan
x
2
+
1
4
(
t
+
tan
t
sec
2
t
)
+
C
=
−
1
2
x
2
−
1
4
arctan
x
2
+
x
2
4
(
1
+
x
4
)
+
C
\begin{aligned} \cfrac{1+2x^4}{x^3(1+x^4)^2}&=\cfrac{1+x^4}{x^3(1+x^4)^2}+\cfrac{x^4}{x^3(1+x^4)^2}\\ &=\cfrac{1}{x^3(1+x^4)}+\cfrac{x}{(1+x^4)^2}\\ &=\cfrac{1}{x^3}-\cfrac{x}{1+x^4}+\cfrac{x}{(1+x^4)^2}, \end{aligned}\\ \begin{aligned} \displaystyle\int\cfrac{1+2x^4}{x^3(1+x^4)^2}\mathrm{d}x&=\displaystyle\int\cfrac{1}{x^3}-\mathrm{d}x-\displaystyle\int\cfrac{x}{1+x^4}\mathrm{d}x+\displaystyle\int\cfrac{x}{(1+x^4)^2}\mathrm{d}x\\ &=-\cfrac{1}{2x^2}-\cfrac{1}{2}\arctan x^2+\cfrac{1}{2}\displaystyle\int\cfrac{1}{(1+(x^2)^2)^2}\mathrm{d}(x^2)\\ &\xlongequal{x^2=\tan t}-\cfrac{1}{2x^2}-\cfrac{1}{2}\arctan x^2+\cfrac{1}{2}\displaystyle\int\cfrac{\sec^2t}{\sec^4t}\mathrm{d}t\\ &=-\cfrac{1}{2x^2}-\cfrac{1}{2}\arctan x^2+\cfrac{1}{2}\displaystyle\int\cos^2t\mathrm{d}t\\ &=-\cfrac{1}{2x^2}-\cfrac{1}{2}\arctan x^2+\cfrac{1}{4}\left(t+\cfrac{1}{2}\sin2t\right)+C\\ &=-\cfrac{1}{2x^2}-\cfrac{1}{2}\arctan x^2+\cfrac{1}{4}\left(t+\cfrac{\tan t}{\sec^2t}\right)+C\\ &=-\cfrac{1}{2x^2}-\cfrac{1}{4}\arctan x^2+\cfrac{x^2}{4(1+x^4)}+C \end{aligned}
x3(1+x4)21+2x4=x3(1+x4)21+x4+x3(1+x4)2x4=x3(1+x4)1+(1+x4)2x=x31−1+x4x+(1+x4)2x,∫x3(1+x4)21+2x4dx=∫x31−dx−∫1+x4xdx+∫(1+x4)2xdx=−2x21−21arctanx2+21∫(1+(x2)2)21d(x2)x2=tant−2x21−21arctanx2+21∫sec4tsec2tdt=−2x21−21arctanx2+21∫cos2tdt=−2x21−21arctanx2+41(t+21sin2t)+C=−2x21−21arctanx2+41(t+sec2ttant)+C=−2x21−41arctanx2+4(1+x4)x2+C
(这道题主要利用了因式分解求解)
3.3 反常积分及其计算与判敛
例7 设
m
,
n
m,n
m,n均是正整数,则反常积分
∫
0
1
ln
2
(
1
−
x
)
m
x
n
d
x
\displaystyle\int^1_0\cfrac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}}\mathrm{d}x
∫01nxmln2(1−x)dx的收敛性( )
(
A
)
(A)
(A)仅与
m
m
m的取值有关;
(
B
)
(B)
(B)仅与
n
n
n的取值有关;
(
C
)
(C)
(C)与
m
,
n
m,n
m,n的取值都有关;
(
D
)
(D)
(D)与
m
,
n
m,n
m,n的取值都无关。
解 命
f
(
x
)
=
ln
2
(
1
−
x
)
m
x
n
=
x
−
1
n
[
ln
(
1
−
x
)
]
2
m
f(x)=\cfrac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}}=x^{-\frac{1}{n}}[\ln(1-x)]^{\frac{2}{m}}
f(x)=nxmln2(1−x)=x−n1[ln(1−x)]m2,上限
x
=
1
x=1
x=1与下限
x
=
0
x=0
x=0都是
f
(
x
)
f(x)
f(x)的瑕点,所以应分别讨论之。先讨论上限
x
=
1
x=1
x=1处,当
x
→
1
−
x\to1^-
x→1−时,对于任意正常数
p
p
p(不妨认为
0
<
p
<
1
0<p<1
0<p<1)都有
lim
x
→
1
−
(
1
−
x
)
p
f
(
x
)
=
0
\lim\limits_{x\to1^-}(1-x)^pf(x)=0
x→1−lim(1−x)pf(x)=0。
由极限的定义,对于
ϵ
>
0
\epsilon>0
ϵ>0,存在
δ
>
0
\delta>0
δ>0,固定
δ
\delta
δ,当
1
−
δ
<
x
<
1
1-\delta<x<1
1−δ<x<1时,
0
<
(
1
−
x
)
p
f
(
x
)
<
ϵ
0<(1-x)^pf(x)<\epsilon
0<(1−x)pf(x)<ϵ,即有
0
<
f
(
x
)
<
ϵ
(
1
−
x
)
p
0<f(x)<\cfrac{\epsilon}{(1-x)^p}
0<f(x)<(1−x)pϵ。
于是当
1
−
δ
<
b
<
1
1-\delta<b<1
1−δ<b<1时,有
0
<
∫
1
−
δ
b
f
(
x
)
d
x
<
∫
1
−
δ
b
ϵ
(
1
−
x
)
p
d
x
=
−
ϵ
(
1
−
x
)
−
p
+
1
−
p
+
1
∣
1
−
δ
b
=
−
ϵ
(
1
−
b
)
−
p
+
1
−
p
+
1
+
ϵ
δ
−
p
+
1
−
p
+
1
<
ϵ
δ
−
p
+
1
−
p
+
1
.
\begin{aligned} 0&<\displaystyle\int^b_{1-\delta}f(x)\mathrm{d}x<\displaystyle\int^b_{1-\delta}\cfrac{\epsilon}{(1-x)^p}\mathrm{d}x\\ &=-\cfrac{\epsilon(1-x)^{-p+1}}{-p+1}\biggm\vert^b_{1-\delta}=-\cfrac{\epsilon(1-b)^{-p+1}}{-p+1}+\cfrac{\epsilon\delta^{-p+1}}{-p+1}\\ &<\cfrac{\epsilon\delta^{-p+1}}{-p+1}. \end{aligned}
0<∫1−δbf(x)dx<∫1−δb(1−x)pϵdx=−−p+1ϵ(1−x)−p+1∣∣∣∣1−δb=−−p+1ϵ(1−b)−p+1+−p+1ϵδ−p+1<−p+1ϵδ−p+1.
命
b
→
1
−
b\to1^-
b→1−,
∫
1
−
δ
b
f
(
x
)
d
x
\displaystyle\int^b_{1-\delta}f(x)\mathrm{d}x
∫1−δbf(x)dx随
b
b
b的趋向而单调增加且有上界
ϵ
δ
−
p
+
1
−
p
+
1
\cfrac{\epsilon\delta^{-p+1}}{-p+1}
−p+1ϵδ−p+1,所以
lim
b
→
1
−
∫
1
−
δ
b
f
(
x
)
d
x
\lim\limits_{b\to1^-}\displaystyle\int^b_{1-\delta}f(x)\mathrm{d}x
b→1−lim∫1−δbf(x)dx收敛。
再讨论瑕点
x
=
0
x=0
x=0处。为此,只要讨论当
x
→
0
+
x\to0^+
x→0+时
f
(
x
)
f(x)
f(x)的等价无穷小的阶即可。
f
(
x
)
=
ln
2
(
1
−
x
)
m
x
n
∼
x
→
0
+
x
2
m
−
1
n
f(x)=\cfrac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}}\underset{x\to0^+}{\sim}x^{\frac{2}{m}-\frac{1}{n}}
f(x)=nxmln2(1−x)x→0+∼xm2−n1。若
2
m
−
1
n
⩾
0
\cfrac{2}{m}-\cfrac{1}{n}\geqslant0
m2−n1⩾0,则
x
=
0
x=0
x=0可视为
f
(
x
)
f(x)
f(x)的连续点,
x
=
0
x=0
x=0不是
f
(
x
)
f(x)
f(x)的瑕点。若
2
m
−
1
n
<
0
\cfrac{2}{m}-\cfrac{1}{n}<0
m2−n1<0,因
m
,
n
m,n
m,n均为正整数,故
2
m
−
1
n
>
−
1
n
⩾
−
1
\cfrac{2}{m}-\cfrac{1}{n}>-\cfrac{1}{n}\geqslant-1
m2−n1>−n1⩾−1。与讨论瑕点
x
=
1
x=1
x=1时的同样理由知,此时反常积分
∫
0
1
−
δ
f
(
x
)
d
x
\displaystyle\int^{1-\delta}_0f(x)\mathrm{d}x
∫01−δf(x)dx收敛。由
∫
0
1
ln
2
(
1
−
x
)
m
x
n
d
x
=
∫
0
1
−
δ
f
(
x
)
d
x
+
∫
1
−
δ
1
f
(
x
)
d
x
\displaystyle\int^1_0\cfrac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}}\mathrm{d}x=\displaystyle\int^{1-\delta}_0f(x)\mathrm{d}x+\displaystyle\int_{1-\delta}^1f(x)\mathrm{d}x
∫01nxmln2(1−x)dx=∫01−δf(x)dx+∫1−δ1f(x)dx,当
m
,
n
m,n
m,n均为正整数时,上述反常积分总收敛,与
m
,
n
m,n
m,n具体取值无关,选
(
D
)
(D)
(D)。(这道题主要利用了反常积分分类讨论求解)
3.5 定积分的证明题
例10 设 a n = ∫ 0 π 4 tan n x d x a_n=\displaystyle\int^{\frac{\pi}{4}}_0\tan^nx\mathrm{d}x an=∫04πtannxdx,证明 1 2 ( n + 1 ) < a n < 1 2 ( n − 1 ) ( n ⩾ 2 ) \cfrac{1}{2(n+1)}<a_n<\cfrac{1}{2(n-1)}(n\geqslant2) 2(n+1)1<an<2(n−1)1(n⩾2)。
证
a
0
=
∫
0
π
4
1
d
x
=
π
4
.
a
1
=
∫
0
π
4
tan
n
−
2
x
tan
2
x
d
x
=
∫
0
π
4
(
sec
2
x
−
1
)
tan
n
−
2
x
d
x
=
∫
0
π
4
tan
n
−
2
x
d
(
tan
x
)
−
∫
0
π
4
tan
n
−
2
x
d
x
=
1
n
−
1
−
a
n
−
2
.
(
n
⩾
2
)
\begin{aligned} a_0&=\displaystyle\int^{\frac{\pi}{4}}_01\mathrm{d}x=\cfrac{\pi}{4}.\\ a_1&=\displaystyle\int^{\frac{\pi}{4}}_0\tan^{n-2}x\tan^2x\mathrm{d}x=\displaystyle\int^{\frac{\pi}{4}}_0(\sec^2x-1)\tan^{n-2}x\mathrm{d}x\\ &=\displaystyle\int^{\frac{\pi}{4}}_0\tan^{n-2}x\mathrm{d}(\tan x)-\displaystyle\int^{\frac{\pi}{4}}_0\tan^{n-2}x\mathrm{d}x\\ &=\cfrac{1}{n-1}-a_{n-2}.(n\geqslant2) \end{aligned}
a0a1=∫04π1dx=4π.=∫04πtann−2xtan2xdx=∫04π(sec2x−1)tann−2xdx=∫04πtann−2xd(tanx)−∫04πtann−2xdx=n−11−an−2.(n⩾2)
所以
a
n
+
a
n
+
2
=
1
n
−
1
a_n+a_{n+2}=\cfrac{1}{n-1}
an+an+2=n−11。
但因
a
n
<
a
n
−
2
a_n<a_{n-2}
an<an−2,所以
1
n
−
1
=
a
n
+
a
n
+
2
>
2
a
n
,
a
n
<
1
2
(
n
−
1
)
\cfrac{1}{n-1}=a_n+a_{n+2}>2a_n,a_n<\cfrac{1}{2(n-1)}
n−11=an+an+2>2an,an<2(n−1)1。
又因
a
n
<
a
n
−
2
a_n<a_{n-2}
an<an−2及
a
n
+
a
n
+
2
=
1
n
−
1
a_n+a_{n+2}=\cfrac{1}{n-1}
an+an+2=n−11,所以
2
a
n
−
2
>
a
n
+
a
n
+
2
=
1
n
−
1
,
a
n
−
2
>
1
2
(
n
−
1
)
2a_{n-2}>a_n+a_{n+2}=\cfrac{1}{n-1},a_{n-2}>\cfrac{1}{2(n-1)}
2an−2>an+an+2=n−11,an−2>2(n−1)1。从而有
1
2
(
n
+
1
)
<
a
n
<
1
2
(
n
−
1
)
(
n
⩾
2
)
\cfrac{1}{2(n+1)}<a_n<\cfrac{1}{2(n-1)}(n\geqslant2)
2(n+1)1<an<2(n−1)1(n⩾2)。(这道题主要利用了数列递推式求解)
例11 设 n n n为正整数, F ( x ) = ∫ 1 n x e − t 3 d t + ∫ e e ( n + 1 ) x t 2 1 + t 4 d t F(x)=\displaystyle\int^{nx}_1e^{-t^3}\mathrm{d}t+\displaystyle\int^{e^{(n+1)x}}_e\cfrac{t^2}{1+t^4}\mathrm{d}t F(x)=∫1nxe−t3dt+∫ee(n+1)x1+t4t2dt。
(1)证明:对于给定的正整数 n n n, F ( x ) F(x) F(x)有且仅有一个零点,并且为正,记为 x n ( n = 1 , 2 , ⋯ ) x_n(n=1,2,\cdots) xn(n=1,2,⋯);
证
F
(
1
n
+
1
)
=
∫
1
n
n
+
1
e
−
t
3
d
t
+
∫
e
e
t
2
1
+
t
4
d
t
<
0
,
F
(
1
n
)
=
∫
1
1
e
−
t
3
d
t
+
∫
e
e
n
+
1
n
t
2
1
+
t
4
d
t
>
0
,
F
′
(
x
)
=
n
e
−
(
n
x
)
3
+
e
2
(
n
+
1
)
x
e
4
(
n
+
1
)
x
+
1
⋅
e
(
n
+
1
)
x
(
n
+
1
)
>
0
,
\begin{aligned} &F\left(\cfrac{1}{n+1}\right)=\displaystyle\int^{\frac{n}{n+1}}_1e^{-t^3}\mathrm{d}t+\displaystyle\int^{e}_e\cfrac{t^2}{1+t^4}\mathrm{d}t<0,\\ &F\left(\cfrac{1}{n}\right)=\displaystyle\int^{1}_1e^{-t^3}\mathrm{d}t+\displaystyle\int^{e^{\frac{n+1}{n}}}_e\cfrac{t^2}{1+t^4}\mathrm{d}t>0,\\ &F'(x)=ne^{-(nx)^3}+\cfrac{e^{2(n+1)x}}{e^{4(n+1)x}+1}\cdot e^{(n+1)x}(n+1)>0, \end{aligned}
F(n+11)=∫1n+1ne−t3dt+∫ee1+t4t2dt<0,F(n1)=∫11e−t3dt+∫eenn+11+t4t2dt>0,F′(x)=ne−(nx)3+e4(n+1)x+1e2(n+1)x⋅e(n+1)x(n+1)>0,
所以
F
(
x
)
F(x)
F(x)有且仅有一个零点,并且
1
n
+
1
<
x
n
<
1
n
\cfrac{1}{n+1}<x_n<\cfrac{1}{n}
n+11<xn<n1。
(2)证明:(1)中的 { x n } \{x_n\} {xn}单调递减且 lim n → ∞ x n = 0 \lim\limits_{n\to\infty}x_n=0 n→∞limxn=0。
证 由 1 n + 1 < x n < 1 n \cfrac{1}{n+1}<x_n<\cfrac{1}{n} n+11<xn<n1,有 1 n + 2 < x n + 1 < 1 n + 1 \cfrac{1}{n+2}<x_{n+1}<\cfrac{1}{n+1} n+21<xn+1<n+11,所以 { x n } \{x_n\} {xn}单调递减且 lim n → ∞ x n = 0 \lim\limits_{n\to\infty}x_n=0 n→∞limxn=0。(这道题主要利用了求特解求解)
例12 设 f ( x ) f(x) f(x)在 [ 0 , 1 ] [0,1] [0,1]上连续, ∫ 0 1 f ( x ) d x = 0 \displaystyle\int^1_0f(x)\mathrm{d}x=0 ∫01f(x)dx=0。试证明:至少存在一点 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ∈(0,1),使 ∫ 0 ξ f ( t ) d t = f ( ξ ) \displaystyle\int^\xi_0f(t)\mathrm{d}t=f(\xi) ∫0ξf(t)dt=f(ξ)。
证 命 F ( x ) = ∫ 0 x f ( t ) d t F(x)=\displaystyle\int^x_0f(t)\mathrm{d}t F(x)=∫0xf(t)dt,问题成为证明存在 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ∈(0,1)使 F ( ξ ) − F ′ ( ξ ) = 0 F(\xi)-F'(\xi)=0 F(ξ)−F′(ξ)=0。命 φ ( x ) = e − x F ( x ) \varphi(x)=e^{-x}F(x) φ(x)=e−xF(x),有 φ ( 0 ) = F ( 0 ) = 0 , φ ( 1 ) = e − 1 F ( 1 ) = e − 1 ∫ 0 1 f ( x ) d x = 0 \varphi(0)=F(0)=0,\varphi(1)=e^{-1}F(1)=e^{-1}\displaystyle\int^1_0f(x)\mathrm{d}x=0 φ(0)=F(0)=0,φ(1)=e−1F(1)=e−1∫01f(x)dx=0, φ ( x ) \varphi(x) φ(x)在 [ 0 , 1 ] [0,1] [0,1]上连续,在 ( 0 , 1 ) (0,1) (0,1)内可导,由罗尔定理知,存在 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ∈(0,1)使 φ ′ ( ξ ) = 0 \varphi'(\xi)=0 φ′(ξ)=0,即 F ( ξ ) − F ′ ( ξ ) = 0 F(\xi)-F'(\xi)=0 F(ξ)−F′(ξ)=0,亦即 ∫ 0 ξ f ( t ) d t = f ( ξ ) \displaystyle\int^\xi_0f(t)\mathrm{d}t=f(\xi) ∫0ξf(t)dt=f(ξ)。(这道题主要利用了构造函数求解)
例13 设 f ( x ) f(x) f(x)在区间 [ 0 , 1 ] [0,1] [0,1]上连续,且 ∫ 0 1 f ( x ) d x = c ≠ 0 \displaystyle\int^1_0f(x)\mathrm{d}x=c\ne0 ∫01f(x)dx=c=0。证明:在开区间 ( 0 , 1 ) (0,1) (0,1)内至少存在不同的两点 ξ 1 ∈ ( 0 , 1 ) \xi_1\in(0,1) ξ1∈(0,1)与 ξ 2 ∈ ( 0 , 1 ) , ξ 1 ≠ ξ 2 \xi_2\in(0,1),\xi_1\ne\xi_2 ξ2∈(0,1),ξ1=ξ2,使 1 f ( ξ 1 ) + 1 f ( ξ 2 ) = 2 c \cfrac{1}{f(\xi_1)}+\cfrac{1}{f(\xi_2)}=\cfrac{2}{c} f(ξ1)1+f(ξ2)1=c2。
证 命
F
(
x
)
=
1
c
∫
0
x
f
(
t
)
d
t
,
x
∈
(
0
,
1
]
,
F
(
0
)
=
0
,
F
(
1
)
=
1
F(x)=\cfrac{1}{c}\displaystyle\int^x_0f(t)\mathrm{d}t,x\in(0,1],F(0)=0,F(1)=1
F(x)=c1∫0xf(t)dt,x∈(0,1],F(0)=0,F(1)=1。
F
(
x
)
F(x)
F(x)是
x
∈
[
0
,
1
]
x\in[0,1]
x∈[0,1]上的可导函数,由连续函数介值定理知,存在
ξ
∈
(
0
,
1
)
\xi\in(0,1)
ξ∈(0,1)使
F
(
ξ
)
=
1
2
F(\xi)=\cfrac{1}{2}
F(ξ)=21,即
F
(
ξ
)
=
1
c
∫
0
ξ
f
(
t
)
d
t
=
1
2
,
ξ
∈
(
0
,
1
)
F(\xi)=\cfrac{1}{c}\displaystyle\int^\xi_0f(t)\mathrm{d}t=\cfrac{1}{2},\xi\in(0,1)
F(ξ)=c1∫0ξf(t)dt=21,ξ∈(0,1)。
对
F
(
x
)
F(x)
F(x)在区间
[
0
,
ξ
]
[0,\xi]
[0,ξ]上及区间
[
ξ
,
1
]
[\xi,1]
[ξ,1]上分别用拉格朗日中值定理,有
F
′
(
ξ
1
)
(
ξ
−
0
)
=
F
(
ξ
)
−
F
(
0
)
=
1
2
−
0
=
1
2
,
ξ
1
∈
(
0
,
ξ
)
,
F
′
(
ξ
2
)
(
1
−
ξ
)
=
F
(
1
)
−
F
(
ξ
)
=
1
−
1
2
=
1
2
,
ξ
1
∈
(
ξ
,
1
)
.
F'(\xi_1)(\xi-0)=F(\xi)-F(0)=\cfrac{1}{2}-0=\cfrac{1}{2},\xi_1\in(0,\xi),\\ F'(\xi_2)(1-\xi)=F(1)-F(\xi)=1-\cfrac{1}{2}=\cfrac{1}{2},\xi_1\in(\xi,1).
F′(ξ1)(ξ−0)=F(ξ)−F(0)=21−0=21,ξ1∈(0,ξ),F′(ξ2)(1−ξ)=F(1)−F(ξ)=1−21=21,ξ1∈(ξ,1).
即
1
c
f
(
ξ
1
)
ξ
=
1
2
,
1
c
f
(
ξ
2
)
(
1
−
ξ
)
=
1
2
,
1
f
(
ξ
1
)
=
2
ξ
c
,
1
f
(
ξ
2
)
=
2
(
1
−
ξ
)
c
,
1
f
(
ξ
1
)
+
1
f
(
ξ
2
)
=
2
c
,
0
<
ξ
1
<
ξ
<
ξ
2
<
1.
\cfrac{1}{c}f(\xi_1)\xi=\cfrac{1}{2},\cfrac{1}{c}f(\xi_2)(1-\xi)=\cfrac{1}{2},\\ \cfrac{1}{f(\xi_1)}=\cfrac{2\xi}{c},\cfrac{1}{f(\xi_2)}=\cfrac{2(1-\xi)}{c},\\ \cfrac{1}{f(\xi_1)}+\cfrac{1}{f(\xi_2)}=\cfrac{2}{c},0<\xi_1<\xi<\xi_2<1.
c1f(ξ1)ξ=21,c1f(ξ2)(1−ξ)=21,f(ξ1)1=c2ξ,f(ξ2)1=c2(1−ξ),f(ξ1)1+f(ξ2)1=c2,0<ξ1<ξ<ξ2<1.
(这道题主要利用了构造函数求解)
练习三
10. 设 f ( x ) f(x) f(x)在区间 [ 0 , 1 ] [0,1] [0,1]上单调递减且为正值的连续函数,证明 ∫ 0 1 x f 2 ( x ) d x ∫ 0 1 x f ( x ) d x ⩽ ∫ 0 1 f 2 ( x ) d x ∫ 0 1 f ( x ) d x \cfrac{\displaystyle\int^1_0xf^2(x)\mathrm{d}x}{\displaystyle\int^1_0xf(x)\mathrm{d}x}\leqslant\cfrac{\displaystyle\int^1_0f^2(x)\mathrm{d}x}{\displaystyle\int^1_0f(x)\mathrm{d}x} ∫01xf(x)dx∫01xf2(x)dx⩽∫01f(x)dx∫01f2(x)dx。
解
∫
0
1
x
f
2
(
x
)
d
x
∫
0
1
x
f
(
x
)
d
x
−
∫
0
1
f
2
(
x
)
d
x
∫
0
1
f
(
x
)
d
x
=
∫
0
1
x
f
2
(
x
)
d
x
∫
0
1
f
(
x
)
d
x
−
∫
0
1
f
2
(
x
)
d
x
∫
0
1
x
f
(
x
)
d
x
∫
0
1
x
f
(
x
)
d
x
∫
0
1
f
(
x
)
d
x
.
\cfrac{\displaystyle\int^1_0xf^2(x)\mathrm{d}x}{\displaystyle\int^1_0xf(x)\mathrm{d}x}-\cfrac{\displaystyle\int^1_0f^2(x)\mathrm{d}x}{\displaystyle\int^1_0f(x)\mathrm{d}x}=\cfrac{\displaystyle\int^1_0xf^2(x)\mathrm{d}x\displaystyle\int^1_0f(x)\mathrm{d}x-\displaystyle\int^1_0f^2(x)\mathrm{d}x\displaystyle\int^1_0xf(x)\mathrm{d}x}{\displaystyle\int^1_0xf(x)\mathrm{d}x\displaystyle\int^1_0f(x)\mathrm{d}x}.
∫01xf(x)dx∫01xf2(x)dx−∫01f(x)dx∫01f2(x)dx=∫01xf(x)dx∫01f(x)dx∫01xf2(x)dx∫01f(x)dx−∫01f2(x)dx∫01xf(x)dx.
上式右边的分母显然为正,考虑上式的分子,令
F
(
x
)
=
∫
0
x
t
f
2
(
t
)
d
t
∫
0
x
f
(
t
)
d
t
−
∫
0
x
f
2
(
t
)
d
t
∫
0
x
t
f
(
t
)
d
t
.
F
′
(
x
)
=
x
f
2
(
x
)
∫
0
x
f
(
t
)
d
t
+
f
(
x
)
∫
0
x
t
f
2
(
t
)
d
t
−
f
2
(
x
)
∫
0
x
t
f
(
t
)
d
t
−
x
f
(
x
)
∫
0
x
t
f
2
(
t
)
d
t
=
f
2
(
x
)
∫
0
x
(
x
−
t
)
f
(
t
)
d
t
+
f
(
x
)
∫
0
x
(
t
−
x
)
f
2
(
t
)
d
t
=
f
(
x
)
[
∫
0
x
(
x
−
t
)
f
(
x
)
f
(
t
)
d
t
−
∫
0
x
(
x
−
t
)
f
2
(
t
)
d
t
]
=
f
(
x
)
∫
0
x
(
x
−
t
)
(
f
(
x
)
−
f
(
t
)
)
f
(
t
)
d
t
\begin{aligned} F(x)&=\displaystyle\int^x_0tf^2(t)\mathrm{d}t\displaystyle\int^x_0f(t)\mathrm{d}t-\displaystyle\int^x_0f^2(t)\mathrm{d}t\displaystyle\int^x_0tf(t)\mathrm{d}t.\\ F'(x)&=xf^2(x)\displaystyle\int^x_0f(t)\mathrm{d}t+f(x)\displaystyle\int^x_0tf^2(t)\mathrm{d}t-f^2(x)\displaystyle\int^x_0tf(t)\mathrm{d}t-xf(x)\displaystyle\int^x_0tf^2(t)\mathrm{d}t\\ &=f^2(x)\displaystyle\int^x_0(x-t)f(t)\mathrm{d}t+f(x)\displaystyle\int^x_0(t-x)f^2(t)\mathrm{d}t\\ &=f(x)\left[\displaystyle\int^x_0(x-t)f(x)f(t)\mathrm{d}t-\displaystyle\int^x_0(x-t)f^2(t)\mathrm{d}t\right]\\ &=f(x)\displaystyle\int^x_0(x-t)(f(x)-f(t))f(t)\mathrm{d}t \end{aligned}
F(x)F′(x)=∫0xtf2(t)dt∫0xf(t)dt−∫0xf2(t)dt∫0xtf(t)dt.=xf2(x)∫0xf(t)dt+f(x)∫0xtf2(t)dt−f2(x)∫0xtf(t)dt−xf(x)∫0xtf2(t)dt=f2(x)∫0x(x−t)f(t)dt+f(x)∫0x(t−x)f2(t)dt=f(x)[∫0x(x−t)f(x)f(t)dt−∫0x(x−t)f2(t)dt]=f(x)∫0x(x−t)(f(x)−f(t))f(t)dt
由于
f
(
x
)
f(x)
f(x)单调减少,所以
(
x
−
t
)
(
f
(
x
)
−
f
(
t
)
)
⩽
0
(x-t)(f(x)-f(t))\leqslant0
(x−t)(f(x)−f(t))⩽0。因此当
x
⩾
x\geqslant
x⩾时
F
′
(
x
)
⩽
0
F'(x)\leqslant0
F′(x)⩽0。于是
F
(
1
)
⩽
F
(
0
)
=
0
F(1)\leqslant F(0)=0
F(1)⩽F(0)=0,这就证明了
∫
0
1
x
f
2
(
x
)
d
x
∫
0
1
x
f
(
x
)
d
x
⩽
∫
0
1
f
2
(
x
)
d
x
∫
0
1
f
(
x
)
d
x
\cfrac{\displaystyle\int^1_0xf^2(x)\mathrm{d}x}{\displaystyle\int^1_0xf(x)\mathrm{d}x}\leqslant\cfrac{\displaystyle\int^1_0f^2(x)\mathrm{d}x}{\displaystyle\int^1_0f(x)\mathrm{d}x}
∫01xf(x)dx∫01xf2(x)dx⩽∫01f(x)dx∫01f2(x)dx。(这道题主要利用了构造函数求解)
11. 设 f ( x ) f(x) f(x)在 [ 0 , 1 ] [0,1] [0,1]上连续。
(1)求证:存在 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ∈(0,1),使 ∫ 0 ξ f ( t ) d t = ( 1 − ξ ) f ( ξ ) \displaystyle\int^\xi_0f(t)\mathrm{d}t=(1-\xi)f(\xi) ∫0ξf(t)dt=(1−ξ)f(ξ)。
解 将 ∫ 0 ξ f ( t ) d t = ( 1 − ξ ) f ( ξ ) \displaystyle\int^\xi_0f(t)\mathrm{d}t=(1-\xi)f(\xi) ∫0ξf(t)dt=(1−ξ)f(ξ)改写为 ∫ 0 ξ f ( t ) d t − ( 1 − ξ ) f ( ξ ) = 0 \displaystyle\int^\xi_0f(t)\mathrm{d}t-(1-\xi)f(\xi)=0 ∫0ξf(t)dt−(1−ξ)f(ξ)=0。找一个函数 φ ( x ) \varphi(x) φ(x),使 φ ′ ( x ) = ∫ 0 x f ( t ) d t − ( 1 − x ) f ( x ) = ∫ 0 x f ( t ) d t + x f ( x ) − f ( x ) \varphi'(x)=\displaystyle\int^x_0f(t)\mathrm{d}t-(1-x)f(x)=\displaystyle\int^x_0f(t)\mathrm{d}t+xf(x)-f(x) φ′(x)=∫0xf(t)dt−(1−x)f(x)=∫0xf(t)dt+xf(x)−f(x),且满足 φ ( 0 ) = 0 , φ ( 1 ) = 0 \varphi(0)=0,\varphi(1)=0 φ(0)=0,φ(1)=0,那么对 φ ( x ) \varphi(x) φ(x)用罗尔定理即得所证的式子。容易看出 ( x ∫ 0 x f ( t ) d t ) ′ = ∫ 0 x f ( t ) d t + x f ( x ) \left(x\displaystyle\int^x_0f(t)\mathrm{d}t\right)'=\displaystyle\int^x_0f(t)\mathrm{d}t+xf(x) (x∫0xf(t)dt)′=∫0xf(t)dt+xf(x)。可见,若取 φ ( x ) = x ∫ 0 x f ( t ) d t − ∫ 0 x f ( t ) d t \varphi(x)=x\displaystyle\int^x_0f(t)\mathrm{d}t-\displaystyle\int^x_0f(t)\mathrm{d}t φ(x)=x∫0xf(t)dt−∫0xf(t)dt,则有 φ ( 0 ) = 0 , φ ( 1 ) = 0 \varphi(0)=0,\varphi(1)=0 φ(0)=0,φ(1)=0,且 φ ′ ( x ) = ∫ 0 x f ( t ) d t − ( 1 − x ) f ( x ) \varphi'(x)=\displaystyle\int^x_0f(t)\mathrm{d}t-(1-x)f(x) φ′(x)=∫0xf(t)dt−(1−x)f(x)。由罗尔定理知,存在 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ∈(0,1)使 φ ′ ( ξ ) = 0 \varphi'(\xi)=0 φ′(ξ)=0,即 ∫ 0 ξ f ( t ) d t = ( 1 − ξ ) f ( ξ ) \displaystyle\int^\xi_0f(t)\mathrm{d}t=(1-\xi)f(\xi) ∫0ξf(t)dt=(1−ξ)f(ξ)。
(2)若又设 f ( x ) > 0 f(x)>0 f(x)>0且 f ( x ) f(x) f(x)单调递减,求证:这种 ξ \xi ξ是唯一的。
解 若增设
f
(
x
)
>
0
f(x)>0
f(x)>0且
f
(
x
)
f(x)
f(x)单调递减,求证这种
ξ
\xi
ξ是唯一的。用反证法,若存在
ξ
1
∈
(
0
,
1
)
,
ξ
2
∈
(
0
,
1
)
,
ξ
1
≠
ξ
2
\xi_1\in(0,1),\xi_2\in(0,1),\xi_1\ne\xi_2
ξ1∈(0,1),ξ2∈(0,1),ξ1=ξ2,不妨设
0
<
ξ
1
<
ξ
<
ξ
2
<
1
0<\xi_1<\xi<\xi_2<1
0<ξ1<ξ<ξ2<1,使
∫
0
ξ
1
f
(
t
)
d
t
=
(
1
−
ξ
1
)
f
(
ξ
1
)
,
∫
0
ξ
2
f
(
t
)
d
t
=
(
1
−
ξ
2
)
f
(
ξ
2
)
\displaystyle\int^{\xi_1}_0f(t)\mathrm{d}t=(1-\xi_1)f(\xi_1),\displaystyle\int^{\xi_2}_0f(t)\mathrm{d}t=(1-\xi_2)f(\xi_2)
∫0ξ1f(t)dt=(1−ξ1)f(ξ1),∫0ξ2f(t)dt=(1−ξ2)f(ξ2)。将后一式减去前一式,得
∫
ξ
1
ξ
2
f
(
t
)
d
t
=
f
(
ξ
2
)
−
f
(
ξ
1
)
−
ξ
2
f
(
ξ
2
)
+
ξ
1
f
(
ξ
1
)
=
f
(
ξ
2
)
−
f
(
ξ
1
)
−
ξ
2
f
(
ξ
2
)
+
ξ
2
f
(
ξ
1
)
−
ξ
2
f
(
ξ
1
)
+
ξ
1
f
(
ξ
1
)
=
(
1
−
ξ
2
)
(
f
(
ξ
1
)
−
f
(
ξ
2
)
)
−
(
ξ
2
−
ξ
1
)
f
(
ξ
1
)
.
\begin{aligned} \displaystyle\int^{\xi_2}_{\xi_1}f(t)\mathrm{d}t&=f(\xi_2)-f(\xi_1)-\xi_2f(\xi_2)+\xi_1f(\xi_1)\\ &=f(\xi_2)-f(\xi_1)-\xi_2f(\xi_2)+\xi_2f(\xi_1)-\xi_2f(\xi_1)+\xi_1f(\xi_1)\\ &=(1-\xi_2)(f(\xi_1)-f(\xi_2))-(\xi_2-\xi_1)f(\xi_1). \end{aligned}
∫ξ1ξ2f(t)dt=f(ξ2)−f(ξ1)−ξ2f(ξ2)+ξ1f(ξ1)=f(ξ2)−f(ξ1)−ξ2f(ξ2)+ξ2f(ξ1)−ξ2f(ξ1)+ξ1f(ξ1)=(1−ξ2)(f(ξ1)−f(ξ2))−(ξ2−ξ1)f(ξ1).
由条件左边
>
0
>0
>0,右边
<
0
<0
<0。矛盾。即证得不可能有
ξ
1
≠
ξ
2
\xi_1\ne\xi_2
ξ1=ξ2。(这道题主要利用了构造函数求解)
写在最后
如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
欢迎非商业转载,转载请注明出处。