数学分析复习:圆周率和 Euler 常数的构造

本篇文章适合个人复习翻阅,不建议新手入门使用

圆周率 π \pi π 和 Euler 常数 e e e 的构造

圆周率 π \pi π 的构造

我们将以下数列的极限定义为 π \pi π
L n = n ⋅ sin ⁡ 18 0 ∘ n L_n=n\cdot\sin{\frac{180^{\circ}}{n}} Ln=nsinn180
数列 L n L_n Ln 的几何意义即为单位圆内接正 n n n 边形的半周长

证明思路:(单调有界数列必收敛)

L n L_n Ln 单调递增:即证 n sin ⁡ 18 0 ∘ n ≤ ( n + 1 ) sin ⁡ 18 0 ∘ n + 1 n\sin{\frac{180^{\circ}}{n}}\leq (n+1)\sin{\frac{180^{\circ}}{n+1}} nsinn180(n+1)sinn+1180,作代换 t = 18 0 ∘ n ( n + 1 ) t=\frac{180^{\circ}}{n(n+1)} t=n(n+1)180,即证
n sin ⁡ ( n + 1 ) t ≤ ( n + 1 ) sin ⁡ n t n\sin{(n+1)t}\leq (n+1)\sin{nt} nsin(n+1)t(n+1)sinnt注意到
tan ⁡ n t = tan ⁡ ( n − 1 ) t + tan ⁡ t 1 − tan ⁡ ( n − 1 ) t tan ⁡ t ≥ tan ⁡ ( n − 1 ) t + tan ⁡ t ≥ n tan ⁡ t \begin{split} \tan{nt}&=\frac{\tan{(n-1)t}+\tan{t}}{1-\tan{(n-1)t}\tan{t}}\\ &\geq \tan{(n-1)t}+\tan{t}\\ &\geq n\tan{t} \end{split} tannt=1tan(n1)ttanttan(n1)t+tanttan(n1)t+tantntant
sin ⁡ ( n + 1 ) t = sin ⁡ n t cos ⁡ t + cos ⁡ n t sin ⁡ t = sin ⁡ n t cos ⁡ t ( 1 + tan ⁡ t tan ⁡ n t ) ≤ sin ⁡ n t ( 1 + 1 n ) \begin{split} \sin{(n+1)t}&=\sin{nt}\cos{t}+\cos{nt}\sin{t}\\ &=\sin{nt}\cos{t}(1+\frac{\tan{t}}{\tan{nt}})\\ &\leq \sin{nt}(1+\frac{1}{n}) \end{split} sin(n+1)t=sinntcost+cosntsint=sinntcost(1+tannttant)sinnt(1+n1) L n L_n Ln 有上界:设单位圆内接正 n n n 边形的面积为 S n S_n Sn ,则
S n = n ⋅ sin ⁡ 18 0 ∘ n ⋅ cos ⁡ 18 0 ∘ n < 4 S_n=n\cdot\sin{\frac{180^{\circ}}{n}}\cdot\cos{\frac{180^{\circ}}{n}}<4 Sn=nsinn180cosn180<4
L n = n ⋅ sin ⁡ 18 0 ∘ n < 4 cos ⁡ 18 0 ∘ n ≤ 4 cos ⁡ 6 0 ∘ = 8 L_n=n\cdot\sin{\frac{180^{\circ}}{n}}<\frac{4}{\cos{\frac{180^{\circ}}{n}}}\leq \frac{4}{\cos{60^{\circ}}}=8 Ln=nsinn180<cosn1804cos604=8

Euler常数e的构造

我们将e定义为极限 lim ⁡ n → ∞ ( 1 + 1 n ) n \lim\limits_{n\to \infty}(1+\frac{1}{n})^n nlim(1+n1)n,首先来证明这个极限的存在性

证明思路:(单调有界数列必收敛)

  • k ! ≥ 2 k − 1 k!\geq 2^{k-1} k!2k1:数学归纳法易证
  • ( 1 + 1 n ) n ≤ ∑ k = 0 n 1 k ! (1+\frac{1}{n})^n\leq \sum\limits_{k=0}^n\frac{1}{k!} (1+n1)nk=0nk!1:二项式定理展开
    ( 1 + 1 n ) n = ∑ k = 0 n C n k 1 n k = ∑ k = 0 n 1 k ! ( 1 − 1 n ) ( 1 − 2 n ) ⋯ ( 1 − k − 1 n ) ≤ ∑ k = 0 n 1 k ! \begin{split} (1+\frac{1}{n})^n&=\sum\limits_{k=0}^nC_n^k\frac{1}{n^k}\\ &=\sum\limits_{k=0}^n\frac{1}{k!}(1-\frac{1}{n})(1-\frac{2}{n})\cdots(1-\frac{k-1}{n})\\ &\leq \sum\limits_{k=0}^{n}\frac{1}{k!}\\ \end{split} (1+n1)n=k=0nCnknk1=k=0nk!1(1n1)(1n2)(1nk1)k=0nk!1
  • x n = ( 1 + 1 n ) n x_n=(1+\frac{1}{n})^n xn=(1+n1)n有界:$ x n ≤ 1 + 1 + ∑ k = 1 n 1 2 k < 3 x_n\leq 1+1+\sum\limits_{k=1}^n\frac{1}{2^k}<3 xn1+1+k=1n2k1<3
  • { x n } \{x_n\} {xn}单调递增:
    ( 1 + 1 n ) n = ∑ k = 0 n 1 k ! ( 1 − 1 n ) ( 1 − 2 n ) ⋯ ( 1 − k − 1 n ) < ∑ k = 0 n + 1 1 k ! ( 1 − 1 n ) ( 1 − 2 n ) ⋯ ( 1 − k − 1 n + 1 ) = ( 1 + 1 n + 1 ) n + 1 \begin{split} (1+\frac{1}{n})^n&=\sum\limits_{k=0}^n\frac{1}{k!}(1-\frac{1}{n})(1-\frac{2}{n})\cdots(1-\frac{k-1}{n})\\ &<\sum\limits_{k=0}^{n+1}\frac{1}{k!}(1-\frac{1}{n})(1-\frac{2}{n})\cdots(1-\frac{k-1}{n+1})\\ &=(1+\frac{1}{n+1})^{n+1} \end{split} (1+n1)n=k=0nk!1(1n1)(1n2)(1nk1)<k=0n+1k!1(1n1)(1n2)(1n+1k1)=(1+n+11)n+1

根据上述e的定义,可得出一个重要结论: e = ∑ k = 0 ∞ 1 k ! e=\sum\limits_{k=0}^{\infty}\frac{1}{k!} e=k=0k!1证明思路:先证级数收敛,再证 A ≥ B , B ≥ A A\geq B,B\geq A AB,BA

  • 级数 ∑ k = 1 ∞ 1 2 k \sum\limits_{k=1}^{\infty}\frac{1}{2^k} k=12k1收敛,故为Cauchy列
  • 级数 ∑ k = 2 ∞ 1 k ! \sum\limits_{k=2}^{\infty}\frac{1}{k!} k=2k!1收敛
    1 ( n + 1 ) ! + ⋯ + 1 ( n + m ) ! ≤ 1 2 n + 1 + ⋯ + 1 2 n + m < ε \frac{1}{(n+1)!}+\cdots+\frac{1}{(n+m)!}\leq \frac{1}{2^{n+1}}+\cdots+\frac{1}{2^{n+m}}<\varepsilon (n+1)!1++(n+m)!12n+11++2n+m1<ε
  • e ≤ ∑ k = 0 ∞ 1 k ! e\leq \sum\limits_{k=0}^{\infty}\frac{1}{k!} ek=0k!1
    ( 1 + 1 n ) n ≤ ∑ k = 0 ∞ 1 k ! (1+\frac{1}{n})^n\leq \sum\limits_{k=0}^{\infty}\frac{1}{k!} (1+n1)nk=0k!1
  • e ≥ ∑ k = 0 ∞ 1 k ! e\geq \sum\limits_{k=0}^{\infty}\frac{1}{k!} ek=0k!1:利用 { x n } \{x_n\} {xn}是单调递增的
    e = lim ⁡ m → ∞ ( 1 + 1 m ) m ≥ ( 1 + 1 n ) n = ∑ k = 0 n 1 k ! ( 1 − 1 n ) ( 1 − 2 n ) ⋯ ( 1 − k − 1 n ) ≥ ∑ k = 0 n 0 1 k ! ( 1 − 1 n ) ( 1 − 2 n ) ⋯ ( 1 − k − 1 n ) \begin{split} e&=\lim\limits_{m\to\infty}(1+\frac{1}{m})^m\geq (1+\frac{1}{n})^n\\ &=\sum\limits_{k=0}^n\frac{1}{k!}(1-\frac{1}{n})(1-\frac{2}{n})\cdots(1-\frac{k-1}{n})\\ &\geq \sum\limits_{k=0}^{n_0}\frac{1}{k!}(1-\frac{1}{n})(1-\frac{2}{n})\cdots(1-\frac{k-1}{n})\\ \end{split} e=mlim(1+m1)m(1+n1)n=k=0nk!1(1n1)(1n2)(1nk1)k=0n0k!1(1n1)(1n2)(1nk1)固定 n 0 n_0 n0,令 n → ∞ n\to\infty n,得 e ≥ ∑ k = 0 n 0 1 k ! e\geq \sum\limits_{k=0}^{n_0}\frac{1}{k!} ek=0n0k!1
    n 0 → ∞ n_0\to\infty n0,得 e ≥ ∑ k = 0 ∞ 1 k ! e\geq \sum\limits_{k=0}^{\infty}\frac{1}{k!} ek=0k!1

总结: e = lim ⁡ n → ∞ ( 1 + 1 n ) n = ∑ k = 0 ∞ 1 k ! e=\lim\limits_{n\to \infty}(1+\frac{1}{n})^n=\sum\limits_{k=0}^{\infty}\frac{1}{k!} e=nlim(1+n1)n=k=0k!1

参考书:

  • 《数学分析》陈纪修 於崇华 金路
  • 《数学分析之课程讲义》清华大学数学系及丘成桐数学中心
  • 《数学分析习题课讲义》谢惠民 恽自求 易法槐 钱定边 著
  • 19
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值