PPO核心算法流程图

  1. 初始化:首先,算法初始化一个智能体,并准备相关的参数和环境。

  2. 训练阶段

    • 检查是否达到训练迭代次数上限。如果达到,则结束训练。
    • 否则,进行环境的交互,收集状态、动作及奖励信息。
  3. 数据收集

    • 通过与环境的交互,收集状态(state)、动作(action)、奖励(reward)和终止信号(done)等数据,保存为一个经验回放。
  4. 更新机制

    • 检查是否满足更新条件(如达到固定的步数)。
    • 根据收集到的数据计算回报(Return)并进行策略更新。
  5. 优化步骤

    • 分别利用actor和critic网络。Actor网络用于生成动作策略,而Critic网络用来评估这些动作的价值。
    • 在计算损失时,PPO会限制策略更新的范围,以避免过大的政策变化,确保学习过程的稳定性。
  6. 策略评估和更新

    • 采用PPO算法进行策略更新,计算损失后进行反向传播训练网络。
  7. 循环迭代:重复进行上述步骤,直到满足终止条件,最后输出学习得到的策略。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值