💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
文献来源:
摘要:
本文涉及跟踪扩展对象或群组目标,这会导致来自不同测量源的测量数量变化。为此,除了目标的运动学,还会跟踪目标的形状。目标范围采用一种称为随机超曲面模型(RHM)的新方法建模,该方法假设不同的测量源位于形状边界的缩放版本上。本文介绍了用于跟踪星凸近似形状目标的星凸RHM。通过高斯假设的状态估计器进行星凸RHM的贝叶斯推理,从而实现了一种高效的递归闭合形式测量更新。模拟展示了该方法在典型扩展对象和群组跟踪场景中的性能。
典型的目标跟踪建模假设是目标是一个没有范围的数学点。然而,在现实世界的跟踪系统中,有两种主要场景不适用于这一标准假设。
首先,现代传感器设备(如雷达设备)的分辨率通常比目标物体的空间范围更高(参见图1)。因此,在单次扫描中可能会解析出目标物体上的几个未知点,即测量源。这些测量源可能会从一次扫描到另一次扫描变化,并且它们的位置不仅取决于目标的形状,还取决于更复杂的目标特性(如表面的性质)甚至目标与传感器的几何关系。
其次,作为一个单一实体考虑的一组点目标可以被看作是一个整体,因为各个成员之间存在着高度相互依赖性,这由群体行为规定。同样,在这种情况下,测量源会在每次扫描中变化,并且它们的位置高度依赖于群体的属性(例如群体之间的几何关系)。
在这种意义上,扩展物体可以被定义为具有共同属性的一组测量源,例如动态行为或状态变量。如果这组测量源由有限的测量源组成,则称为群体目标[1]。然而,在连续的测量源组成的情况下,则称为扩展物体。根据这一定义,扩展物体和群体跟踪包括跟踪形成目标的一组测量源。
📚2 运行结果
部分代码:
% Calculate Sigma Points
%Stack state and noise mean
x_ukf = [x; measurementNoiseMean];
%Stack state and noise Covariance
C_ukf = blkdiag(C, measurementNoiseCovariance);
n = size(x_ukf, 1);
n_state = size(x, 1);
lamda = alpha^2 * (n + kappa) - n;
% Calculate Weights Mean
WM(1) = lamda / (n + lamda);
WM(2 : 2 * n + 1) = 1 / (2 * (n + lamda));
% Calculate Weights Covariance
WC(1) = (lamda / (n + lamda)) + (1 - alpha^2 + beta);
WC(2 : 2 * n + 1) = 1 / (2 * (n + lamda));
%Calculate Sigma Points
A = sqrt(n + lamda) * chol(C_ukf)';
xSigma = [zeros(size(x_ukf)) -A A];
xSigma = xSigma + repmat(x_ukf, 1, size(xSigma, 2));
% Filterstep
z = 0;
C_yy = 0;
C_xy = 0;
zSigmaPredict = feval(measurementFunctionHandle, xSigma(1:n_state,:), xSigma(n_state + 1:n, :), measurement, numberOfFourierCoef );
for i = 1 : size(zSigmaPredict, 2);
z = z + ( zSigmaPredict(:,i) * WM(i) );
end
for i = 1 : size(zSigmaPredict, 2)
C_yy = C_yy + WC(i) * ( (zSigmaPredict(:,i) - z ) * ( zSigmaPredict(:,i) - z )') ;
C_xy = C_xy + WC(i) * ( (xSigma(1:size(x, 1),i) - x ) * ( zSigmaPredict(:,i) - z )');
end
K = C_xy / C_yy;
x_e = x + K * (zeros(size(z)) - z);
C_e = C - K * (C_yy) * K';
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
M. Baum and U. D. Hanebeck, "Shape tracking of extended objects and group targets with star-convex RHMs," 14th International Conference on Information Fusion, Chicago, IL, USA, 2011, pp. 1-8. keywords: {Shape;Target tracking;Noise measurement;Shape measurement;Bayesian methods;Radar tracking;Mathematical model;Target tracking;shape tracking;extended objects;group targets},