【K-means聚类是如何实现的?】

基本概念

  1. 聚成多少个簇:需要指定K的值
  2. 距离的度量:-般采用欧式距离
  3. 质心:各向量的均值
  4. 优化目标:
    在这里插入图片描述

聚类效果的评价方式

轮廓系数
、

  • a(i):对于第i个元素xi,计算xi与其同一个簇内所有其他元素距离的平均值,表示了簇内的凝聚程度
  • b(i):选取xi外的一个簇,计算xi与该簇内所有点距离的平均距离,遍历其他所有簇,取所有平均值中最小的一个,表示簇间的分离度

计算所有x的轮廓系数,求出平均值即为当前聚类的整体轮廓系数

在这里插入图片描述

  1. 轮廓系数范围在[-1,1]之间。该值越大,越合理。
  2. si接近1,则说明样本i聚类合理;
  3. si接近-1,则说明样本i更应该分类到另外的簇;
  4. 若si 近似为0,则说明样本i在两个簇的边界上。

K-means聚类参数介绍

class sklearn.cluster.KMeans(n_clusters=8,
init=’k-means++’,
n_init=10,
max_iter=300,
tol=0.0001,
precompute_distances=’auto’,
verbose=0,
random_state=None,
copy_x=True,
n_jobs=None,
algorithm=’auto’)[source]

【参数】:

  • n_clusters: 类中心的个数,就是要聚成几类。【默认是8个】

  • init:参初始化的方法,默认为’k-means++’

    1. ‘k-means++’: 用一种特殊的方法选定初始质心从而能加速迭代过程的收敛.
    2. ‘random’: 随机从训练数据中选取初始质心。
    3. 如果传递的是一个ndarray,则应该形如 (n_clusters, n_features) 并给出初始质心。
  • n_init: 整形,缺省值=10
    用不同的质心初始化值运行算法的次数,最终解是在inertia意义下选出的最优结果。

  • max_iter :执行一次k-means算法所进行的最大迭代数。

  • Tol: 与inertia结合来确定收敛条件。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值