【YOLO11安卓部署】10分钟快速高效的把YOLO11部署到安卓端

前言:

本文章只针对能较为熟练使用Android Studio进行安卓开发的朋友,如果你对安卓开发并不熟练,可以先熟练了再来尝试。

首先,感谢PIPIKAI(钟志凯)的开源分享,我们将在他的项目android-ncnn-yolo11的基础上进行安卓部署。

PIPIKAIicon-default.png?t=O83Ahttps://github.com/PIPIKAI效果预览:

一、获取源码

建议3种方式来获取源码

1、git clone:

git clone https://github.com/PIPIKAI/android-ncnn-yolo11.git

2、进入GitHub下载ZIP文件:

3、我的网盘分享:

通过百度网盘分享的文件:android-ncnn-yolo11-main.zip 提取码:8888icon-default.png?t=O83Ahttps://pan.baidu.com/s/1uIoXxLxQfWV3H78RSxQxWg

二、快速下载依赖:

2.1 使用的gradle版本是8.7,可以根据自己的需要降低版本

distributionUrl=https\://services.gradle.org/distributions/gradle-8.7-bin.zip

2.2 在修改gradle版本时注意对应的配置

2.3 修改settings.gradle

pluginManagement {
    repositories {
        google() // 优先使用 Google 官方仓库,确保 Firebase 依赖解析
        mavenCentral() // Maven 中央仓库,确保可以找到最新的公共依赖
        maven { url 'https://maven.aliyun.com/repository/google' } // 阿里云镜像
        maven { url 'https://maven.aliyun.com/nexus/content/groups/public/' } // 阿里云镜像
        maven { url 'https://jitpack.io' } // JitPack 仓库
}
dependencyResolutionManagement {
    repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)
    repositories {
        // 配置 Google 的国内镜像
        maven {
            url 'https://maven.aliyun.com/repository/google'
        }
        // 配置 MavenCentral 的国内镜像
        maven {
            url 'https://maven.aliyun.com/repository/central'
        }
        // 添加 JCenter 备用镜像(如需要)
        maven {
            url 'https://maven.aliyun.com/repository/jcenter'
        }
        // 如果需要依赖 Kotlin 相关库,可添加以下镜像
        maven {
            url 'https://maven.aliyun.com/repository/public'
        }
    }
}

rootProject.name = "android-ncnn-yolo11"
include ':app'
}

2.4

 

### 关于YOLOv11与TensorFlow Lite在Android平台上的物体检测 目前提及的YOLO版本最高至YOLOv5,尚未有官方发布的YOLOv11版本[^2]。因此,在讨论如何实现在Android平台上使用YOLOv11与TensorFlow Lite进行物体检测之前,需确认是否存在YOLOv11这一特定版本及其对应的转换工具支持。 对于现有的YOLO模型(如YOLOv3、YOLOv4),将其转化为TensorFlow Lite格式并部署Android设备上已经存在成熟的流程[^1]。此过程涉及几个关键步骤: #### 准备环境 确保开发环境中安装了必要的软件包,例如Windows 10操作系统下配置好Python 3.6及以上版本,并通过PyCharm或Anaconda管理虚拟环境;同时还需要设置好带有GPU加速功能的TensorFlow库以及Android Studio用于构建应用程序。 #### 转换模型 将训练好的YOLO权重文件(.weights)先导入到TensorFlow框架内,再导出为Frozen Graph (.pb),最后利用`TFLiteConverter` API进一步编译成.tflite格式以便能在移动高效执行推理操作。 ```python import tensorflow as tf from yolov4.tf import YOLOv4 yolo = YOLOv4() yolo.classes = "coco.names" yolo.make_model() load_weights(yolo.model, weights_path="yolov4.weights", weight_type="yolo") converter = tf.lite.TFLiteConverter.from_keras_model(yolo.model) tflite_model = converter.convert() with open('model.tflite', 'wb') as f: f.write(tflite_model) ``` #### 应用集成 创建一个新的Android工程或者修改现有项目来加载上述生成的`.tflite`文件,并编写Java/Kotlin代码调用TensorFlow Lite Interpreter接口完成图像输入预处理、前向传播计算预测结果输出等功能模块的设计实现[^4]。 考虑到当前并没有关于YOLOv11的具体资料和技术文档公开发布,建议关注最新研究进展并与社区保持沟通交流获取更多信息更新。如果确实需要基于最先进算法开展工作,则可能要等待一段时间直到该领域专家团队公布更多细节之后才能着手实践尝试。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值