如何对旋转机械(滚动轴承等)进行早期微弱故障的检测

对于滚动轴承早期微弱故障的检测,除了对轴承运行状态趋势进行预测,还需对其进行故障预警。可以引用拉依达准则(3σ 准则)进行假设检验,用控制上限和控制下限来定义轴承运转状态置信区间,超出置信域范围的数据样本则视为滚动轴承发生早期微弱故障。

拉依达准则在假设一组数据量较大的样本检测数据只含有随机误差基础上,计算样本数据的标准差 σ 和均值μ,并按一定置信概率确定一个置信区间,超过这个置信区间的误差属于粗大误差,即异常数据。如下图所示,拉依达准则规定,数值点分布在区间 [μ−σ, μ+σ] 中的概率为 0.682,分布在区间 [μ−2σ, μ+2σ] 中的概率为 0.954,分布在区间 [μ−3σ, μ+3σ] 中的概率为 0.997,即认为数据点落在区间 [μ−3σ, μ+3σ] 之外的概率微小,可认为这些数据为异常值。该准则要求样本数据要服从正态分布或近似正态分布,而一般的滚动轴承振动信号数据符合正态分布,因此可以引用拉依达准则确定滚动轴承运行状态的置信区间,以此作为滚动轴承健康状态和异常状态的分界,若基尼指数势超出置信区间范围,则检测为滚动轴承出现早期微弱故障。

辛辛那提滚动轴承全寿命周期数据集振动信号为例,对采集到的第 2 组振动信号 984 个数据文件分别计算基尼指数,通过 L1 趋势滤波估计其潜在趋势,并计算前 200 个正常运行样本基尼指数的均值与标准差,依据拉以达准则得出置信区间的上下限为 [0.4215, 0.4223]。

基尼指数趋势线在 530 数据样本处超出置信域,检测到滚动轴承发生早期故障。

学术咨询:

担任《Mechanical System and Signal Processing》《中国电机工程学报》等期刊审稿专家,擅长领域:信号滤波/降噪,机器学习/深度学习,时间序列预分析/预测,设备故障诊断/缺陷检测/异常检测。

一种新的类谱峭度算法的旋转机械故障诊断模型(Python)
完整数据可通过学术咨询获得(哥廷根数学学派)

基于高分辨时频分析方法和微分同胚频谱分析的一维时间序列信号模式分解(MATLAB)
算法可迁移至金融时间序列,地震/微震信号,机械振动信号,声发射信号,电压/电流信号,语音信号,声信号,生理信号(ECG,EEG,EMG)等信号。
完整数据和代码可通过学术咨询获得(哥廷根数学学派)

 

完整代码可通过学术咨询获得:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值