ollama大模型容器详解,根据ollama进行web开发

本文介绍了Ollama,一个基于Docker容器的大模型运行平台,支持从中央仓库拉取模型并在本地运行。文章详细讲解了Windows下载、命令行操作、RESTfulAPI使用以及不同环境(CPU和GPU)的docker部署。Ollama旨在提供本地AI模型运行环境,同时也支持webapi和服务端部署选项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

介绍

ollama底层基于docker容器,将类似于镜像的大模型从中央仓库拉取到本地,在docker容器中运行
ollama在每个容器中都提供了大模型运行的基本环境
简单的来说,可以把ollama看作docker容器,把ai大模型看作是镜像

ollama下载到本机

官方目前提供了多个系统的下载方案:
window,macOs,linux
还可以借助docker容器运行ollama

详细说一下windows的下载:
在这里插入图片描述
现在是无法选择下载文件夹的,默认是下载的C盘,但是模型下载目录是可以指定的,在系统变量中新建ollama_models变量,指定一个目录,不要指定c盘

ollama后台指令

ollama通过命令行指令启动服务

使用方法:
ollama [flags]
ollama [command]

可用命令:
serve       启动ollama
create      从模型文件创建模型
show        显示模型信息
run         运行模型
pull        从注册表中拉取模型
push        将模型推送到注册表
list        列出模型
cp          复制模型
rm          删除模型
help        获取有关任何命令的帮助信息

标志:
-h, --help      显示ollama的帮助信息
-v, --version   显示版本信息

使用 "ollama [command] --help" 获取有关特定命令的更多信息

ollama RestfulApi

在命令行操作ollama是极其不方便,同时官方也提供了ollama的restful风格的api
我通过接口测试工具测了一下,发现接口使用起来是很简单的,甚至不需要任何身份验证
其中/generate是等全部输出后再一起返回,而/chat则是逐个单词返回

这里放一下请求响应:

POST localhost:11434/api/generate 
{
    "model": "mistral",
    "prompt": "请用中文描述双亲委派机制",
    "stream": false
}

POST localhost:11434/api/chat
{
    "model": "mistral",
    "messages": [
        {
            "role": "user",
            "content": "请用中文回答:python,java,c的执行效率比较,并说明原因"
        }
    ]
}

ollama docker部署

docker中央仓库已经有ollama的镜像了,所以可以直接再docker容器中部署ollama程序

CPU only

docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama

Nvidia GPU

docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama

总结

按照ollama团队的设想,ollama存在的目的就是提供一个可以再个人电脑上运行大语言模型的环境,而非运行在服务器上
在客户端上运行ai,可以完全依赖客户端的算力
但是ollama有提供了web api和docker部署方案,显然他们也没有放弃服务端部署

<think>好的,用户想了解如何在本地部署Ollama大模型,需要指令教程。首先,我需要回顾之前提供的引用内容,尤其是引用[2]和[3],里面有详细的命令列表和步骤。用户可能已经安装了Ollama,但需要具体的部署步骤,包括安装后的命令使用、拉取模型、运行模型等。 首先,我得确保回答结构清晰,分步骤说明。可能需要从安装开始,虽然用户提到的是部署,但假设他们已经安装好了,所以重点放在部署后的命令。引用[1]提到ollama list、pull、run等命令,这些是关键步骤。 然后,用户可能需要知道如何自定义模型,比如修改系统提示词或参数。引用[4]中的Modelfile示例很重要,需要解释如何创建和使用自定义配置。要提到FROM指令指定基础模型,SYSTEM设置提示词,PARAMETER调整温度等参数。 还需要考虑用户可能遇到的问题,比如如何找到可用模型,如何管理本地模型列表。引用[3]中的ollama list和ps命令需要说明,以及如何通过pull获取新模型。 此外,常见问题如模型下载慢可能需要给出换源的解决方案,比如设置环境变量。这部分在引用中没有提到,但根据经验,用户可能遇到,所以可以补充。 最后,生成相关问题时要围绕部署步骤、命令使用、自定义配置和问题排查,确保覆盖用户可能的后续疑问。比如如何创建自定义模型,优化部署,解决网络问题等。 总结回答结构:安装步骤、常用命令详解、自定义模型方法、注意事项及问题排查。确保每个部分都有引用支持,并自然添加引用标记。同时保持语言简洁,步骤明确,帮助用户逐步完成部署。</think>### Ollama大模型本地部署指令教程 根据引用内容整理,本地部署Ollama大模型的核心步骤如下: #### 一、基础部署流程 1. **安装与启动** - 安装完成后验证命令可用性: ```bash ollama --version # 查看版本 ollama serve # 启动服务[^3] ``` 2. **模型管理** - 拉取预训练模型(以中文Llama2为例): ```bash ollama pull llama2-chinese:13b # 从仓库下载模型[^3] ``` - 查看本地模型列表: ```bash ollama list # 显示已下载模型[^1] ``` 3. **运行模型** ```bash ollama run llama2-chinese:13b # 启动交互式对话[^3] ``` #### 二、自定义模型配置 通过`Modelfile`实现个性化设置(示例): ```dockerfile FROM llama2-chinese:13b # 基础模型 SYSTEM "以学术论文风格回答" # 定义角色设定 PARAMETER temperature 0.3 # 调整生成随机性[^4] ``` 创建自定义模型: ```bash ollama create my-model -f ./Modelfile # 构建新模型[^2] ``` #### 三、高级操作 1. **模型维护** ```bash ollama cp my-model backup-model # 复制模型[^3] ollama rm llama2-chinese:7b # 删除旧版本[^1] ``` 2. **进程监控** ```bash ollama ps # 查看运行中的模型实例[^2] ``` #### 四、注意事项 1. 首次运行`ollama run`会自动下载缺失模型 2. 模型下载速度慢时可尝试: ```bash export OLLAMA_HOST=mirror.example.com # 设置镜像源 ``` 3. 自定义模型需遵循`FROM`->`SYSTEM`->`PARAMETER`的编写顺序[^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值