基于离散小波变换(DWT)算法的数字语音识别(附带MATLAB代码)
数字语音识别是一种将语音信号转换为可识别的文本或命令的技术。离散小波变换(DWT)是一种常用的信号处理方法,可用于提取语音信号的特征并用于语音识别。本文将介绍如何使用DWT算法进行数字语音识别,并提供MATLAB代码示例。
DWT是一种多尺度分析方法,它将信号分解为不同频率的子带。在语音信号处理中,DWT可以用于提取语音信号的频率和时域特征。下面是使用DWT算法进行数字语音识别的步骤:
- 导入语音信号数据:首先,我们需要准备一段语音信号的数据。可以使用MATLAB的
audioread函数将语音文件读取为数字信号。假设我们的语音文件名为speech.wav,可以使用以下代码导入语音信号:
[speech, fs] = audioread(
本文介绍了如何利用离散小波变换(DWT)进行数字语音识别,包括语音信号导入、预处理、DWT变换、特征提取(如MFCC)以及使用KNN分类器进行识别的MATLAB代码示例。
订阅专栏 解锁全文
283

被折叠的 条评论
为什么被折叠?



